zero_copy_tensor.cc 35.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/convert_utils.h"
16
#include "paddle/fluid/framework/data_layout_transform.h"
17 18 19
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
W
Wilber 已提交
20
#include "paddle/fluid/inference/api/paddle_tensor.h"
N
nhzlx 已提交
21
#include "paddle/fluid/memory/memcpy.h"
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/fluid/platform/float16.h"
24
#include "paddle/phi/core/allocator.h"
25
#ifdef PADDLE_WITH_ONNXRUNTIME
H
heliqi 已提交
26 27
#include "onnxruntime_c_api.h"    // NOLINT
#include "onnxruntime_cxx_api.h"  // NOLINT
28
#endif
29

30
namespace paddle_infer {
31

32 33
using float16 = paddle::platform::float16;

34
void Tensor::Reshape(const std::vector<int> &shape) {
35 36 37 38 39 40 41
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    shape_.assign(shape.begin(), shape.end());
    return;
  }
#endif

W
Wilber 已提交
42 43
  PADDLE_ENFORCE_EQ(
      name_.empty(), false,
44
      paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
45 46 47
          "Need to SetName first, so that the corresponding tensor can "
          "be retrieved."));
  PADDLE_ENFORCE_EQ(input_or_output_, true,
48
                    paddle::platform::errors::PermissionDenied(
W
Wilber 已提交
49
                        "Can't reshape the output tensor, it is readonly"));
50
  auto *scope = static_cast<paddle::framework::Scope *>(scope_);
51
  auto *var = scope->FindVar(name_);
W
Wilber 已提交
52
  PADDLE_ENFORCE_NOT_NULL(
53
      var, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
54
               "No tensor called [%s] in the runtime scope", name_));
55
  auto *tensor = var->GetMutable<paddle::framework::LoDTensor>();
56
  tensor->Resize(phi::make_ddim(shape));
57 58
}

S
Steffy-zxf 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
void Tensor::ReshapeStrings(const size_t &shape) {
  PADDLE_ENFORCE_EQ(
      name_.empty(), false,
      paddle::platform::errors::PreconditionNotMet(
          "Need to SetName first, so that the corresponding tensor can "
          "be retrieved."));
  PADDLE_ENFORCE_EQ(input_or_output_, true,
                    paddle::platform::errors::PermissionDenied(
                        "Can't reshape the output tensor, it is readonly"));
  auto *scope = static_cast<paddle::framework::Scope *>(scope_);
  auto *var = scope->FindVar(name_);
  PADDLE_ENFORCE_NOT_NULL(
      var, paddle::platform::errors::PreconditionNotMet(
               "No tensor called [%s] in the runtime scope", name_));
  paddle_infer::Strings *tensor = var->GetMutable<paddle_infer::Strings>();
  tensor->resize(shape);
}

#define EAGER_GET_TENSOR(tensor_type)    \
  if (!tensor_) {                        \
    tensor_ = FindTensor<tensor_type>(); \
  }                                      \
  auto *tensor = static_cast<tensor_type *>(tensor_);
82

83
template <typename T>
84
T *Tensor::mutable_data(PlaceType place) {
S
Steffy-zxf 已提交
85
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
86 87
  PADDLE_ENFORCE_GT(
      tensor->numel(), 0,
88 89
      paddle::platform::errors::PreconditionNotMet(
          "You should call Tensor::Reshape(const std::vector<int> "
W
Wilber 已提交
90 91
          "&shape)"
          "function before retrieving mutable_data from input tensor."));
92
  switch (static_cast<int>(place)) {
93 94
    case static_cast<int>(PlaceType::kCPU): {
      return tensor->mutable_data<T>(paddle::platform::CPUPlace());
95
    }
96 97 98 99 100
    case static_cast<int>(PlaceType::kGPU): {
      return tensor->mutable_data<T>(paddle::platform::CUDAPlace(device_));
    }
    case static_cast<int>(PlaceType::kXPU): {
      return tensor->mutable_data<T>(paddle::platform::XPUPlace(device_));
101
    }
102 103 104
    case static_cast<int>(PlaceType::kNPU): {
      return tensor->mutable_data<T>(paddle::platform::NPUPlace(device_));
    }
105
    default:
106
      PADDLE_THROW(paddle::platform::errors::Unavailable(
107 108
          "Only CPU / CUDA / XPU / NPU places is supported. The place `%d` is "
          "not supported.",
109
          static_cast<int>(place)));
110 111 112 113 114 115
      break;
  }
  return nullptr;
}

template <typename T>
116
T *Tensor::data(PlaceType *place, int *size) const {
S
Steffy-zxf 已提交
117
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
118 119
  auto *res = tensor->data<T>();

120 121 122 123 124 125
  if (paddle::platform::is_cpu_place(tensor->place())) {
    *place = PlaceType::kCPU;
  } else if (paddle::platform::is_gpu_place(tensor->place())) {
    *place = PlaceType::kGPU;
  } else if (paddle::platform::is_xpu_place(tensor->place())) {
    *place = PlaceType::kXPU;
126 127
  } else if (paddle::platform::is_npu_place(tensor->place())) {
    *place = PlaceType::kNPU;
128
  } else {
129
    *place = PlaceType::kUNK;
130 131 132 133 134 135
  }

  *size = tensor->numel();
  return res;
}

136
DataType Tensor::type() const {
137 138 139 140 141
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    return dtype_;
  }
#endif
S
Steffy-zxf 已提交
142
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
143
  auto type = paddle::framework::TransToProtoVarType(tensor->dtype());
144 145
  if (type == paddle::framework::proto::VarType::FP32) {
    return DataType::FLOAT32;
146 147
  } else if (type == paddle::framework::proto::VarType::FP16) {
    return DataType::FLOAT16;
148 149 150 151 152 153
  } else if (type == paddle::framework::proto::VarType::INT64) {
    return DataType::INT64;
  } else if (type == paddle::framework::proto::VarType::INT32) {
    return DataType::INT32;
  } else if (type == paddle::framework::proto::VarType::UINT8) {
    return DataType::UINT8;
154 155
  } else if (type == paddle::framework::proto::VarType::INT8) {
    return DataType::INT8;
156
  }
157
  return DataType::FLOAT32;
158 159
}

160 161
PlaceType Tensor::place() const { return place_; }

N
nhzlx 已提交
162
template <typename T>
163
void Tensor::CopyFromCpu(const T *data) {
164 165 166 167 168 169 170
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    ORTCopyFromCpu<T>(data);
    return;
  }
#endif

S
Steffy-zxf 已提交
171
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
W
Wilber 已提交
172
  PADDLE_ENFORCE_GE(tensor->numel(), 0,
173 174
                    paddle::platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
W
Wilber 已提交
175 176
                        "std::vector<int> &shape)"
                        "function before copying data from cpu."));
N
nhzlx 已提交
177 178
  size_t ele_size = tensor->numel() * sizeof(T);

179 180
  if (place_ == PlaceType::kCPU) {
    auto *t_data = tensor->mutable_data<T>(paddle::platform::CPUPlace());
N
nhzlx 已提交
181
    std::memcpy(static_cast<void *>(t_data), data, ele_size);
182
  } else if (place_ == PlaceType::kGPU) {
183
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
184 185 186
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    paddle::platform::CUDAPlace gpu_place(device_);
N
nhzlx 已提交
187
    auto *t_data = tensor->mutable_data<T>(gpu_place);
188 189
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
N
nhzlx 已提交
190

191 192 193
    paddle::memory::Copy(gpu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size,
                         dev_ctx->stream());
N
nhzlx 已提交
194
#else
195 196 197
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
N
nhzlx 已提交
198
#endif
199
  } else if (place_ == PlaceType::kXPU) {
200
#ifdef PADDLE_WITH_XPU
201
    paddle::platform::XPUPlace xpu_place(device_);
202
    auto *t_data = tensor->mutable_data<T>(xpu_place);
203 204
    paddle::memory::Copy(xpu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size);
205
#else
206 207 208
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with XPU place because paddle is not compiled "
        "with XPU."));
W
Wilber 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#endif
  } else if (place_ == PlaceType::kNPU) {
#ifdef PADDLE_WITH_ASCEND_CL
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
    paddle::platform::NPUPlace npu_place(device_);
    auto *t_data = tensor->mutable_data<T>(npu_place);
    auto *dev_ctx = static_cast<const paddle::platform::NPUDeviceContext *>(
        pool.Get(npu_place));
    paddle::memory::Copy(npu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size,
                         dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with NPU place because paddle is not compiled "
        "with NPU."));
225 226 227
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
228
        "The analysis predictor supports CPU, GPU, NPU and XPU now."));
N
nhzlx 已提交
229 230 231
  }
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
template <typename T>
struct DataTypeInfo;

template <>
struct DataTypeInfo<float> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::FLOAT32;
};

template <>
struct DataTypeInfo<float16> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::FLOAT16;
};

template <>
struct DataTypeInfo<int64_t> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::INT64;
};

template <>
struct DataTypeInfo<int8_t> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::INT8;
};

template <>
struct DataTypeInfo<uint8_t> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::UINT8;
};

template <>
struct DataTypeInfo<int32_t> {
  paddle::experimental::DataType TYPE = paddle::experimental::DataType::INT32;
};

paddle::experimental::DataLayout LayoutConvert(DataLayout layout) {
  PADDLE_ENFORCE_EQ(
      layout, DataLayout::kNCHW,
      paddle::platform::errors::InvalidArgument("Only NCHW is supported now."));
  return paddle::experimental::DataLayout::NCHW;
}

template <typename T>
void Tensor::ShareExternalData(const T *data, const std::vector<int> &shape,
                               PlaceType place, DataLayout layout) {
  EAGER_GET_TENSOR(paddle::framework::LoDTensor)
  size_t size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  phi::DenseTensorMeta meta(DataTypeInfo<T>().TYPE, phi::make_ddim(shape),
                            LayoutConvert(layout));
  if (place == PlaceType::kCPU) {
    phi::DenseTensor dtensor(
        std::make_shared<phi::Allocation>(const_cast<T *>(data), size,
                                          paddle::platform::CPUPlace()),
        meta);
    *tensor = std::move(dtensor);
  } else if (place == PlaceType::kGPU) {
    phi::DenseTensor dtensor(
        std::make_shared<phi::Allocation>(const_cast<T *>(data), size,
                                          paddle::platform::CUDAPlace(device_)),
        meta);
    *tensor = std::move(dtensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "PlaceType must be PlaceType::kCPU or PlaceType::kGPU."));
  }
}

S
Steffy-zxf 已提交
299 300 301 302 303 304 305 306 307 308
void Tensor::CopyStringsFromCpu(const paddle_infer::Strings *data) {
  EAGER_GET_TENSOR(paddle_infer::Strings);
  PADDLE_ENFORCE_GE(tensor->size(), 0,
                    paddle::platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
                        "std::size_t &shape)function before copying"
                        "the string data from cpu."));
  *tensor = *data;
}

N
nhzlx 已提交
309
template <typename T>
310 311
void Tensor::CopyToCpuImpl(T *data, void *exec_stream, CallbackFunc cb,
                           void *cb_params) const {
S
Steffy-zxf 已提交
312
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
N
nhzlx 已提交
313 314 315 316
  auto ele_num = tensor->numel();
  auto *t_data = tensor->data<T>();
  auto t_place = tensor->place();

317
  paddle::framework::Tensor out;
318 319 320 321
  auto mem_allocation =
      std::make_shared<paddle::memory::allocation::Allocation>(
          static_cast<void *>(data), ele_num * sizeof(T),
          paddle::platform::CPUPlace());
322 323
  out.ResetHolder(mem_allocation);

324
  if (paddle::platform::is_cpu_place(t_place)) {
325 326 327 328 329 330 331 332 333
#ifdef PADDLE_WITH_MKLDNN
    if (tensor->layout() == paddle::framework::DataLayout::kMKLDNN)
      paddle::framework::innerTransDataLayoutFromMKLDNN(
          tensor->layout(), paddle::platform::MKLDNNDeviceContext::tls()
                                .get_cur_paddle_data_layout(),
          *tensor, &out, paddle::platform::CPUPlace(), true);
    else
      std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#else
N
nhzlx 已提交
334
    std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
J
jianghaicheng 已提交
335 336 337 338 339 340 341 342
#endif
  } else if (paddle::platform::is_ipu_place(t_place)) {
#ifdef PADDLE_WITH_IPU
    std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with IPU place because paddle is not compiled "
        "with IPU."));
343
#endif
344
  } else if (place_ == PlaceType::kGPU) {
345
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
346 347
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
348
    auto gpu_place = t_place;
349 350 351 352 353
    auto *dev_ctx = static_cast<const paddle::platform::CUDADeviceContext *>(
        pool.Get(gpu_place));
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), gpu_place, t_data,
                         ele_num * sizeof(T), dev_ctx->stream());
354 355 356
#ifdef PADDLE_WITH_HIP
    hipStreamSynchronize(dev_ctx->stream());
#else
357 358 359 360 361 362 363 364 365 366
    // async, return stream
    if (nullptr != exec_stream) {
      *(static_cast<cudaStream_t *>(exec_stream)) = dev_ctx->stream();
      // async with callback
    } else if (cb) {
      cudaLaunchHostFunc(dev_ctx->stream(), cb, cb_params);
      // sync
    } else {
      cudaStreamSynchronize(dev_ctx->stream());
    }
367
#endif
N
nhzlx 已提交
368
#else
369 370 371
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
N
nhzlx 已提交
372
#endif
373
  } else if (place_ == PlaceType::kXPU) {
374
#ifdef PADDLE_WITH_XPU
375
    auto xpu_place = t_place;
376 377 378
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), xpu_place, t_data,
                         ele_num * sizeof(T));
379
#else
380 381 382
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with XPU place because paddle is not compiled "
        "with XPU."));
W
Wilber 已提交
383 384 385 386 387
#endif
  } else if (place_ == PlaceType::kNPU) {
#ifdef PADDLE_WITH_ASCEND_CL
    paddle::platform::DeviceContextPool &pool =
        paddle::platform::DeviceContextPool::Instance();
388
    auto npu_place = t_place;
W
Wilber 已提交
389 390 391 392 393
    auto *dev_ctx = static_cast<const paddle::platform::NPUDeviceContext *>(
        pool.Get(npu_place));
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), npu_place, t_data,
                         ele_num * sizeof(T), dev_ctx->stream());
394
    paddle::platform::NPUStreamSync(dev_ctx->stream());
W
Wilber 已提交
395 396 397 398
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with NPU place because paddle is not compiled "
        "with NPU."));
399 400 401
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
W
Wilber 已提交
402
        "The analysis predictor supports CPU, GPU, NPU and XPU now."));
N
nhzlx 已提交
403 404
  }
}
405 406 407

template <typename T>
void Tensor::CopyToCpu(T *data) const {
408 409 410 411 412 413 414
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    ORTCopyToCpu<T>(data);
    return;
  }
#endif

415 416 417 418 419 420 421 422 423 424 425 426 427
  CopyToCpuImpl<T>(data, nullptr, nullptr, nullptr);
}

template <typename T>
void Tensor::CopyToCpuAsync(T *data, void *exec_stream) const {
  CopyToCpuImpl<T>(data, exec_stream, nullptr, nullptr);
}

template <typename T>
void Tensor::CopyToCpuAsync(T *data, CallbackFunc cb, void *cb_params) const {
  CopyToCpuImpl<T>(data, nullptr, cb, cb_params);
}

428 429 430 431 432
template PD_INFER_DECL void Tensor::CopyFromCpu<float>(const float *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int64_t>(const int64_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int32_t>(const int32_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<uint8_t>(const uint8_t *data);
template PD_INFER_DECL void Tensor::CopyFromCpu<int8_t>(const int8_t *data);
433
template PD_INFER_DECL void Tensor::CopyFromCpu<float16>(const float16 *data);
434

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
template PD_INFER_DECL void Tensor::ShareExternalData<float>(
    const float *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<int64_t>(
    const int64_t *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<int32_t>(
    const int32_t *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<uint8_t>(
    const uint8_t *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<int8_t>(
    const int8_t *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);
template PD_INFER_DECL void Tensor::ShareExternalData<float16>(
    const float16 *data, const std::vector<int> &shape, PlaceType place,
    DataLayout layout);

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
template PD_INFER_DECL void Tensor::CopyToCpu<float>(float *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int64_t>(int64_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int32_t>(int32_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<uint8_t>(uint8_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<int8_t>(int8_t *data) const;
template PD_INFER_DECL void Tensor::CopyToCpu<float16>(float16 *data) const;

template PD_INFER_DECL void Tensor::CopyToCpuImpl<float>(float *data,
                                                         void *exec_stream,
                                                         CallbackFunc cb,
                                                         void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<int64_t>(
    int64_t *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<int32_t>(
    int32_t *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<uint8_t>(
    uint8_t *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<int8_t>(
    int8_t *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuImpl<float16>(
    float16 *data, void *exec_stream, CallbackFunc cb, void *cb_params) const;

template PD_INFER_DECL void Tensor::CopyToCpuAsync<float>(
    float *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int64_t>(
    int64_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int32_t>(
    int32_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<uint8_t>(
    uint8_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int8_t>(
    int8_t *data, void *exec_stream) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<float16>(
    float16 *data, void *exec_stream) const;

template PD_INFER_DECL void Tensor::CopyToCpuAsync<float>(
    float *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int64_t>(
    int64_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int32_t>(
    int32_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<uint8_t>(
    uint8_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<int8_t>(
    int8_t *data, CallbackFunc cb, void *cb_params) const;
template PD_INFER_DECL void Tensor::CopyToCpuAsync<float16>(
    float16 *data, CallbackFunc cb, void *cb_params) const;
501

502 503 504 505 506 507 508 509 510 511
template PD_INFER_DECL float *Tensor::data<float>(PlaceType *place,
                                                  int *size) const;
template PD_INFER_DECL int64_t *Tensor::data<int64_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL int32_t *Tensor::data<int32_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL uint8_t *Tensor::data<uint8_t>(PlaceType *place,
                                                      int *size) const;
template PD_INFER_DECL int8_t *Tensor::data<int8_t>(PlaceType *place,
                                                    int *size) const;
512 513
template PD_INFER_DECL float16 *Tensor::data<float16>(PlaceType *place,
                                                      int *size) const;
514

515 516 517 518 519
template PD_INFER_DECL float *Tensor::mutable_data<float>(PlaceType place);
template PD_INFER_DECL int64_t *Tensor::mutable_data<int64_t>(PlaceType place);
template PD_INFER_DECL int32_t *Tensor::mutable_data<int32_t>(PlaceType place);
template PD_INFER_DECL uint8_t *Tensor::mutable_data<uint8_t>(PlaceType place);
template PD_INFER_DECL int8_t *Tensor::mutable_data<int8_t>(PlaceType place);
520
template PD_INFER_DECL float16 *Tensor::mutable_data<float16>(PlaceType place);
521

522
Tensor::Tensor(void *scope) : scope_{scope} {}
523

S
Steffy-zxf 已提交
524
template <typename T>
525
void *Tensor::FindTensor() const {
W
Wilber 已提交
526 527
  PADDLE_ENFORCE_EQ(
      name_.empty(), false,
528
      paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
529 530
          "Need to SetName first, so that the corresponding tensor can "
          "be retrieved."));
531
  auto *scope = static_cast<paddle::framework::Scope *>(scope_);
532
  auto *var = scope->FindVar(name_);
W
Wilber 已提交
533
  PADDLE_ENFORCE_NOT_NULL(
534
      var, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
535
               "No tensor called [%s] in the runtime scope", name_));
S
Steffy-zxf 已提交
536
  auto *tensor = var->GetMutable<T>();
537 538 539
  return tensor;
}

540
std::vector<int> Tensor::shape() const {
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
#ifdef PADDLE_WITH_ONNXRUNTIME
  if (is_ort_tensor_) {
    std::vector<int> shape;
    // input handle
    if (idx_ < 0) {
      shape.assign(shape_.begin(), shape_.end());
    } else {  // output handle
      auto binding = binding_.lock();
      PADDLE_ENFORCE_NOT_NULL(binding,
                              paddle::platform::errors::PreconditionNotMet(
                                  "output tensor [%s] no binding ptr", name_));
      std::vector<Ort::Value> outputs = binding->GetOutputValues();
      Ort::Value &value = outputs[idx_];
      auto info = value.GetTensorTypeAndShapeInfo();
      auto ort_shape = info.GetShape();
      shape.assign(ort_shape.begin(), ort_shape.end());
    }
    return shape;
  }
#endif
S
Steffy-zxf 已提交
561
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
W
Wilber 已提交
562
  PADDLE_ENFORCE_NOT_NULL(
563
      tensor_, paddle::platform::errors::PreconditionNotMet(
W
Wilber 已提交
564
                   "Not found tensor called %s in the scope", name_));
W
wenbin 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
// mkldnn may does layout transform internally, so need to reorder before
// return
#ifdef PADDLE_WITH_MKLDNN
  if (tensor->layout() == paddle::framework::DataLayout::kMKLDNN) {
    paddle::framework::DataLayout out_layout =
        paddle::platform::MKLDNNDeviceContext::tls()
            .get_cur_paddle_data_layout();
    // Set default as NCHW in case not specified
    out_layout = out_layout == paddle::framework::DataLayout::kAnyLayout
                     ? paddle::framework::DataLayout::kNCHW
                     : out_layout;
    // In these data layouts, channel dimension is either on 2nd position: nChw
    // or
    // at last nhwC, so for dim==2 these layouts are the same and nothing should
    // be done. Similarly for dim==1 when you have just one possible
    // combination.
581
    if (tensor->dims().size() < 3) return phi::vectorize<int>(tensor->dims());
582 583
    if (out_layout == paddle::framework::DataLayout::kNHWC ||
        out_layout == paddle::framework::DataLayout::kNDHWC) {
584
      auto dims = phi::vectorize<int>(tensor->dims());
W
wenbin 已提交
585 586 587
      std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
      return dims;
    } else {
588
      return phi::vectorize<int>(tensor->dims());
W
wenbin 已提交
589 590 591
    }
  }
#endif
592
  return phi::vectorize<int>(tensor->dims());
593 594
}

595
void Tensor::SetLoD(const std::vector<std::vector<size_t>> &x) {
S
Steffy-zxf 已提交
596
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
597
  paddle::framework::LoD lod;
598 599 600 601 602 603
  for (auto &level : x) {
    lod.emplace_back(level);
  }
  tensor->set_lod(lod);
}

604
std::vector<std::vector<size_t>> Tensor::lod() const {
S
Steffy-zxf 已提交
605
  EAGER_GET_TENSOR(paddle::framework::LoDTensor);
606 607 608 609 610 611 612
  std::vector<std::vector<size_t>> res;
  for (auto &level : tensor->lod()) {
    res.emplace_back(level);
  }
  return res;
}

613 614 615 616 617 618 619 620 621
void Tensor::SetName(const std::string &name) { name_ = name; }

const std::string &Tensor::name() const { return name_; }

void Tensor::SetPlace(PlaceType place, int device) {
  place_ = place;
  device_ = device;
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
#ifdef PADDLE_WITH_ONNXRUNTIME
void Tensor::SetOrtMark(bool is_ort_tensor) { is_ort_tensor_ = is_ort_tensor; }

void Tensor::SetOrtBinding(const std::shared_ptr<Ort::IoBinding> binding) {
  binding_ = binding;
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, float *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<float>(memory_info, data, size, shape,
                                         shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, int64_t *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<int64_t>(memory_info, data, size, shape,
                                           shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, int32_t *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<int32_t>(memory_info, data, size, shape,
                                           shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, uint8_t *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<uint8_t>(memory_info, data, size, shape,
                                           shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, int8_t *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor<int8_t>(memory_info, data, size, shape,
                                          shape_len);
}

Ort::Value GetOrtVaule(const Ort::MemoryInfo &memory_info, float16 *data,
                       size_t size, const int64_t *shape, size_t shape_len) {
  return Ort::Value::CreateTensor(memory_info, static_cast<void *>(data),
                                  size * sizeof(float16), shape, shape_len,
                                  ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16);
}

template <typename T>
void Tensor::ORTCopyFromCpu(const T *data) {
  auto binding = binding_.lock();
  PADDLE_ENFORCE_NOT_NULL(binding,
                          paddle::platform::errors::PreconditionNotMet(
                              "input tensor [%s] no binding ptr", name_));
  const char *device_name = place_ == PlaceType::kCPU ? "Cpu" : "Cuda";
  Ort::MemoryInfo memory_info(device_name, OrtDeviceAllocator, device_,
                              OrtMemTypeDefault);
  size_t size = std::accumulate(begin(shape_), end(shape_), 1UL,
                                std::multiplies<size_t>());
H
heliqi 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
  size_t buffer_size = size * sizeof(T);
  if (buffer_size > buffer_.size()) {
    buffer_.resize(buffer_size);
  }
  std::memcpy(static_cast<void *>(buffer_.data()), data, buffer_size);

  auto onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
  if (std::is_same<T, float>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT;
  } else if (std::is_same<T, double>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE;
  } else if (std::is_same<T, int64_t>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT64;
  } else if (std::is_same<T, int32_t>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32;
  } else if (std::is_same<T, uint8_t>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8;
  } else if (std::is_same<T, int8_t>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_INT8;
  } else if (std::is_same<T, float16>::value) {
    onnx_dtype = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16;
  }

  if (onnx_dtype == ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED) {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Found undefined data type for onnxruntime, only supports "
        "float16/float32/float64/int8/uint8/int32/int64."));
  }

  auto ort_value =
      Ort::Value::CreateTensor(memory_info, buffer_.data(), buffer_size,
                               shape_.data(), shape_.size(), onnx_dtype);

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
  binding->BindInput(name_.c_str(), ort_value);
}

template <typename T>
void Tensor::ORTCopyToCpu(T *data) const {
  auto binding = binding_.lock();
  PADDLE_ENFORCE_NOT_NULL(binding,
                          paddle::platform::errors::PreconditionNotMet(
                              "output tensor [%s] no binding ptr", name_));
  std::vector<Ort::Value> outputs = binding->GetOutputValues();
  Ort::Value &value = outputs[idx_];
  auto info = value.GetTensorTypeAndShapeInfo();
  size_t size = info.GetElementCount() * sizeof(T);

  if (place_ == PlaceType::kCPU) {
    std::memcpy(static_cast<void *>(data), value.GetTensorData<void *>(), size);
  } else {
H
heliqi 已提交
727 728 729
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "CopyToCpu error.The current ONNXRuntime backend doesn't support "
        "GPU."));
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
  }
}

template void Tensor::ORTCopyFromCpu<float>(const float *data);
template void Tensor::ORTCopyFromCpu<int64_t>(const int64_t *data);
template void Tensor::ORTCopyFromCpu<int32_t>(const int32_t *data);
template void Tensor::ORTCopyFromCpu<uint8_t>(const uint8_t *data);
template void Tensor::ORTCopyFromCpu<int8_t>(const int8_t *data);
template void Tensor::ORTCopyFromCpu<float16>(const float16 *data);

template void Tensor::ORTCopyToCpu<float>(float *data) const;
template void Tensor::ORTCopyToCpu<int32_t>(int32_t *data) const;
template void Tensor::ORTCopyToCpu<uint8_t>(uint8_t *data) const;
template void Tensor::ORTCopyToCpu<int8_t>(int8_t *data) const;
template void Tensor::ORTCopyToCpu<float16>(float16 *data) const;
#endif

W
Wilber 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
namespace experimental {
template <typename T>
void InternalUtils::CopyFromCpuWithIoStream(paddle_infer::Tensor *t,
                                            const T *data,
                                            cudaStream_t stream) {
  if (t->tensor_ == nullptr) {
    PADDLE_ENFORCE_EQ(
        t->name_.empty(), false,
        paddle::platform::errors::PreconditionNotMet(
            "Need to SetName first, so that the corresponding tensor can "
            "be retrieved."));
    auto *scope = static_cast<paddle::framework::Scope *>(t->scope_);
    auto *var = scope->FindVar(t->name_);
    PADDLE_ENFORCE_NOT_NULL(
        var, paddle::platform::errors::PreconditionNotMet(
                 "No tensor called [%s] in the runtime scope", t->name_));
    auto *tensor = var->GetMutable<paddle::framework::LoDTensor>();
    t->tensor_ = tensor;
  }

  auto *tensor = static_cast<paddle::framework::LoDTensor *>(t->tensor_);
  PADDLE_ENFORCE_GE(tensor->numel(), 0,
                    paddle::platform::errors::PreconditionNotMet(
                        "You should call Tensor::Reshape(const "
                        "std::vector<int> &shape)"
                        "function before copying data from cpu."));
  size_t ele_size = tensor->numel() * sizeof(T);
  if (t->place_ == PlaceType::kCPU) {
    auto *t_data = tensor->mutable_data<T>(paddle::platform::CPUPlace());
    std::memcpy(static_cast<void *>(t_data), data, ele_size);
  } else if (t->place_ == PlaceType::kGPU) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::platform::CUDAPlace gpu_place(t->device_);
    auto *t_data = tensor->mutable_data<T>(gpu_place);
    paddle::memory::Copy(gpu_place, static_cast<void *>(t_data),
                         paddle::platform::CPUPlace(), data, ele_size, stream);
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "CopyFromCpuWithIoStream only supports CPU and GPU now."));
  }
}

template <typename T>
void InternalUtils::CopyToCpuWithIoStream(paddle_infer::Tensor *t, T *data,
                                          cudaStream_t stream) {
  if (t->tensor_ == nullptr) {
    PADDLE_ENFORCE_EQ(
        t->name_.empty(), false,
        paddle::platform::errors::PreconditionNotMet(
            "Need to SetName first, so that the corresponding tensor can "
            "be retrieved."));
    auto *scope = static_cast<paddle::framework::Scope *>(t->scope_);
    auto *var = scope->FindVar(t->name_);
    PADDLE_ENFORCE_NOT_NULL(
        var, paddle::platform::errors::PreconditionNotMet(
                 "No tensor called [%s] in the runtime scope", t->name_));
    auto *tensor = var->GetMutable<paddle::framework::LoDTensor>();
    t->tensor_ = tensor;
  }

  auto *tensor = static_cast<paddle::framework::LoDTensor *>(t->tensor_);
  auto ele_num = tensor->numel();
  auto *t_data = tensor->data<T>();
  auto t_place = tensor->place();

  paddle::framework::Tensor out;
  auto mem_allocation =
      std::make_shared<paddle::memory::allocation::Allocation>(
          static_cast<void *>(data), ele_num * sizeof(T),
          paddle::platform::CPUPlace());
  out.ResetHolder(mem_allocation);

  if (paddle::platform::is_cpu_place(t_place)) {
#ifdef PADDLE_WITH_MKLDNN
    if (tensor->layout() == paddle::framework::DataLayout::kMKLDNN)
      paddle::framework::innerTransDataLayoutFromMKLDNN(
          tensor->layout(), paddle::platform::MKLDNNDeviceContext::tls()
                                .get_cur_paddle_data_layout(),
          *tensor, &out, paddle::platform::CPUPlace(), true);
    else
      std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#else
    std::memcpy(static_cast<void *>(data), t_data, ele_num * sizeof(T));
#endif
  } else if (t->place_ == PlaceType::kGPU) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    paddle::memory::Copy(paddle::platform::CPUPlace(),
                         static_cast<void *>(data), t_place, t_data,
                         ele_num * sizeof(T), stream);
#else
    PADDLE_THROW(paddle::platform::errors::Unavailable(
        "Can not create tensor with CUDA place because paddle is not compiled "
        "with CUDA."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "CopyToCpuWithIoStream only supports CPU and GPU now."));
  }
}

template void InternalUtils::CopyFromCpuWithIoStream<float>(
    paddle_infer::Tensor *t, const float *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<int64_t>(
    paddle_infer::Tensor *t, const int64_t *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<int32_t>(
    paddle_infer::Tensor *t, const int32_t *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<uint8_t>(
    paddle_infer::Tensor *t, const uint8_t *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<int8_t>(
    paddle_infer::Tensor *t, const int8_t *data, cudaStream_t stream);
template void InternalUtils::CopyFromCpuWithIoStream<float16>(
    paddle_infer::Tensor *t, const float16 *data, cudaStream_t stream);

template void InternalUtils::CopyToCpuWithIoStream<float>(
    paddle_infer::Tensor *t, float *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<int64_t>(
    paddle_infer::Tensor *t, int64_t *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<int32_t>(
    paddle_infer::Tensor *t, int32_t *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<uint8_t>(
    paddle_infer::Tensor *t, uint8_t *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<int8_t>(
    paddle_infer::Tensor *t, int8_t *data, cudaStream_t stream);
template void InternalUtils::CopyToCpuWithIoStream<float16>(
    paddle_infer::Tensor *t, float16 *data, cudaStream_t stream);

}  // namespace experimental

880
}  // namespace paddle_infer