nets.py 26.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
M
minqiyang 已提交
16
import six
17
from . import layers
18
from .data_feeder import check_variable_and_dtype, convert_dtype
F
fengjiayi 已提交
19

20 21 22
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
23
    "glu",
24
    "scaled_dot_product_attention",
Q
qiaolongfei 已提交
25
    "img_conv_group",
26
]
D
dzhwinter 已提交
27

F
fengjiayi 已提交
28 29 30

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
31
                         filter_size,
F
fengjiayi 已提交
32 33
                         pool_size,
                         pool_stride,
C
chengduoZH 已提交
34
                         pool_padding=0,
C
chengduoZH 已提交
35
                         pool_type='max',
C
chengduoZH 已提交
36 37 38 39 40 41 42 43
                         global_pooling=False,
                         conv_stride=1,
                         conv_padding=0,
                         conv_dilation=1,
                         conv_groups=1,
                         param_attr=None,
                         bias_attr=None,
                         act=None,
X
Xin Pan 已提交
44
                         use_cudnn=True):
C
chengduoZH 已提交
45
    """
S
swtkiwi 已提交
46 47
	:api_attr: Static Graph

S
SunGaofeng 已提交
48
    The simple_img_conv_pool api is composed of :ref:`api_fluid_layers_conv2d` and :ref:`api_fluid_layers_pool2d` .
C
chengduoZH 已提交
49 50

    Args:
S
SunGaofeng 已提交
51 52
        input (Variable): 4-D Tensor, shape is [N, C, H, W], data type can be float32 or float64.
        num_filters(int): The number of filters. It is the same as the output channels.
C
chengduoZH 已提交
53 54 55
        filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise,
            the filter_size_H = filter_size_W = filter_size.
S
SunGaofeng 已提交
56
        pool_size (int|list|tuple): The pooling size of pool2d layer. If pool_size
C
chengduoZH 已提交
57 58
            is a list or tuple, it must contain two integers, (pool_size_H, pool_size_W).
            Otherwise, the pool_size_H = pool_size_W = pool_size.
S
SunGaofeng 已提交
59
        pool_stride (int|list|tuple): The pooling stride of pool2d layer. If pool_stride
C
chengduoZH 已提交
60 61
            is a list or tuple, it must contain two integers, (pooling_stride_H, pooling_stride_W).
            Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
S
SunGaofeng 已提交
62
        pool_padding (int|list|tuple): The padding of pool2d layer. If pool_padding is a list or
C
chengduoZH 已提交
63 64
            tuple, it must contain two integers, (pool_padding_H, pool_padding_W).
            Otherwise, the pool_padding_H = pool_padding_W = pool_padding. Default 0.
S
SunGaofeng 已提交
65
        pool_type (str): Pooling type can be :math:`max` for max-pooling or :math:`avg` for
C
chengduoZH 已提交
66 67 68
            average-pooling. Default :math:`max`.
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            pool_size and pool_padding while be ignored. Default False
C
chengduo 已提交
69
        conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
C
chengduoZH 已提交
70 71
            list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
            the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
C
chengduo 已提交
72
        conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
C
chengduoZH 已提交
73 74
            a list or  tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
            Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
C
chengduo 已提交
75
        conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
C
chengduoZH 已提交
76 77
            a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
            Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
C
chengduo 已提交
78
        conv_groups (int): The groups number of the conv2d Layer. According to grouped
C
chengduoZH 已提交
79 80 81
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
            Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        act (str): Activation type for conv2d, if it is set to None, activation is not
            appended. Default: None.
C
chengduoZH 已提交
96 97 98 99
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
S
SunGaofeng 已提交
100 101 102 103
        4-D Tensor, the result of input after conv2d and pool2d, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
104 105 106 107

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
108
            import paddle.fluid as fluid
S
SunGaofeng 已提交
109
            img = fluid.data(name='img', shape=[100, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
110 111 112 113 114 115 116
            conv_pool = fluid.nets.simple_img_conv_pool(input=img,
                                                        filter_size=5,
                                                        num_filters=20,
                                                        pool_size=2,
                                                        pool_stride=2,
                                                        act="relu")
    """
F
fengjiayi 已提交
117 118 119 120
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
C
chengduoZH 已提交
121 122 123 124
        stride=conv_stride,
        padding=conv_padding,
        dilation=conv_dilation,
        groups=conv_groups,
F
fengjiayi 已提交
125
        param_attr=param_attr,
C
chengduoZH 已提交
126
        bias_attr=bias_attr,
C
chengduoZH 已提交
127
        act=act,
X
Xin Pan 已提交
128
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
129 130 131 132

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
133
        pool_type=pool_type,
C
chengduoZH 已提交
134
        pool_stride=pool_stride,
C
chengduoZH 已提交
135 136
        pool_padding=pool_padding,
        global_pooling=global_pooling,
X
Xin Pan 已提交
137
        use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
138 139 140 141 142 143 144 145 146
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
147
                   param_attr=None,
Q
Qiao Longfei 已提交
148
                   conv_with_batchnorm=False,
W
wanghaoshuang 已提交
149
                   conv_batchnorm_drop_rate=0.0,
Q
Qiao Longfei 已提交
150
                   pool_stride=1,
C
chengduoZH 已提交
151
                   pool_type="max",
X
Xin Pan 已提交
152
                   use_cudnn=True):
Q
Qiao Longfei 已提交
153
    """
S
swtkiwi 已提交
154 155
	:api_attr: Static Graph

C
chengduoZH 已提交
156 157 158 159 160 161
    The Image Convolution Group is composed of Convolution2d, BatchNorm, DropOut,
    and Pool2d. According to the input arguments, img_conv_group will do serials of
    computation for Input using Convolution2d, BatchNorm, DropOut, and pass the last
    result to Pool2d.

    Args:
L
lvmengsi 已提交
162
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float32 or float64.
C
chengduoZH 已提交
163 164
        conv_num_filter(list|tuple): Indicates the numbers of filter of this group.
        pool_size (int|list|tuple): The pooling size of Pool2d Layer. If pool_size
L
lvmengsi 已提交
165 166
            is a list or tuple, it must contain two integers, (pool_size_height, pool_size_width).
            Otherwise, the pool_size_height = pool_size_width = pool_size.
C
chengduoZH 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        conv_padding (int|list|tuple): The padding size of the Conv2d Layer. If padding is
            a list or tuple, its length must be equal to the length of conv_num_filter.
            Otherwise the conv_padding of all Conv2d Layers are the same. Default 1.
        conv_filter_size (int|list|tuple): The filter size. If filter_size is a list or
            tuple, its length must be equal to the length of conv_num_filter.
            Otherwise the conv_filter_size of all Conv2d Layers are the same. Default 3.
        conv_act (str): Activation type for Conv2d Layer that is not followed by BatchNorm.
            Default: None.
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        conv_with_batchnorm (bool|list): Indicates whether to use BatchNorm after Conv2d Layer.
            If conv_with_batchnorm is a list, its length must be equal to the length of
            conv_num_filter. Otherwise, conv_with_batchnorm indicates whether all the
            Conv2d Layer follows a BatchNorm. Default False.
        conv_batchnorm_drop_rate (float|list): Indicates the drop_rate of Dropout Layer
            after BatchNorm. If conv_batchnorm_drop_rate is a list, its length must be
            equal to the length of conv_num_filter. Otherwise, drop_rate of all Dropout
            Layers is conv_batchnorm_drop_rate. Default 0.0.
        pool_stride (int|list|tuple): The pooling stride of Pool2d layer. If pool_stride
            is a list or tuple, it must contain two integers, (pooling_stride_H,
            pooling_stride_W). Otherwise, the pooling_stride_H = pooling_stride_W = pool_stride.
            Default 1.
        pool_type (str): Pooling type can be :math:`max` for max-pooling and :math:`avg` for
            average-pooling. Default :math:`max`.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True

    Return:
194 195
        A Variable holding Tensor representing the final result after serial computation using Convolution2d,
        BatchNorm, DropOut, and Pool2d, whose data type is the same with input.
C
chengduoZH 已提交
196 197 198 199

    Examples:
        .. code-block:: python

200
            import paddle.fluid as fluid
L
lvmengsi 已提交
201
            img = fluid.data(name='img', shape=[None, 1, 28, 28], dtype='float32')
C
chengduoZH 已提交
202 203 204 205 206 207 208
            conv_pool = fluid.nets.img_conv_group(input=img,
                                                  conv_padding=1,
                                                  conv_num_filter=[3, 3],
                                                  conv_filter_size=3,
                                                  conv_act="relu",
                                                  pool_size=2,
                                                  pool_stride=2)
Q
Qiao Longfei 已提交
209 210 211
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
212
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
213 214 215 216 217

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
C
chengduoZH 已提交
218
            assert len(obj) == len(conv_num_filter)
Q
Qiao Longfei 已提交
219 220 221 222
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
223
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
224 225 226
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

M
minqiyang 已提交
227
    for i in six.moves.range(len(conv_num_filter)):
Q
Qiao Longfei 已提交
228 229 230 231 232 233 234 235 236
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
237
            param_attr=param_attr[i],
C
chengduoZH 已提交
238
            act=local_conv_act,
X
Xin Pan 已提交
239
            use_cudnn=use_cudnn)
Q
Qiao Longfei 已提交
240 241

        if conv_with_batchnorm[i]:
K
Kaipeng Deng 已提交
242
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
243 244
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
245
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
246 247 248 249 250

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
C
chengduoZH 已提交
251
        pool_stride=pool_stride,
X
Xin Pan 已提交
252
        use_cudnn=use_cudnn)
F
fengjiayi 已提交
253
    return pool_out
D
dzhwinter 已提交
254 255 256 257 258


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
259
                       param_attr=None,
260
                       act="sigmoid",
261 262
                       pool_type="max",
                       bias_attr=None):
C
chengduoZH 已提交
263
    """
S
swtkiwi 已提交
264 265
	:api_attr: Static Graph

S
SunGaofeng 已提交
266 267 268 269 270
    **This api takes input as an LoDTensor. If input is a Tensor, please use** 
    :ref:`api_fluid_nets_simple_img_conv_pool` **instead**

    The sequence_conv_pool is composed of :ref:`api_fluid_layers_sequence_conv` 
    and :ref:`api_fluid_layers_sequence_pool` .
C
chengduoZH 已提交
271 272

    Args:
S
SunGaofeng 已提交
273 274 275
        input (Variable): 2-D LoDTensor, the input of sequence_conv, 
            which supports variable-time length input sequence. 
            The underlying of input is a matrix with shape
C
chengduoZH 已提交
276
            (T, N), where T is the total time steps in this mini-batch and N is
S
SunGaofeng 已提交
277
            the input_hidden_size. The data type is float32 or float64.
C
chengduoZH 已提交
278 279
        num_filters(int): The number of filter.
        filter_size (int): The filter size.
S
SunGaofeng 已提交
280 281 282
        param_attr (ParamAttr): The parameters of the sequence_conv Layer. Default: None.
        act (str|None): Activation type for Sequence_conv Layer. 
                        If set to None, no activation will be applied. Default: "sigmoid".
C
chengduoZH 已提交
283 284 285
        pool_type (str): Pooling type can be :math:`max` for max-pooling, :math:`average` for
            average-pooling, :math:`sum` for sum-pooling, :math:`sqrt` for sqrt-pooling.
            Default :math:`max`.
286 287 288 289 290
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
291

S
SunGaofeng 已提交
292 293 294 295 296 297
    Returns:
        The final result after sequence_conv and sequence_pool. 
        It is a 2-D Tensor, with the same data type as :attr:`input`

    Return Type:
        Variable
C
chengduoZH 已提交
298 299 300 301

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
302 303
            import paddle.fluid as fluid
            input_dim = 100 #len(word_dict)
C
chengduoZH 已提交
304 305
            emb_dim = 128
            hid_dim = 512
S
SunGaofeng 已提交
306
            data = fluid.data(name="words", shape=[None, 1], dtype="int64", lod_level=1)
C
chengduoZH 已提交
307 308 309 310 311 312 313
            emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
            seq_conv = fluid.nets.sequence_conv_pool(input=emb,
                                                     num_filters=hid_dim,
                                                     filter_size=3,
                                                     act="tanh",
                                                     pool_type="sqrt")
    """
314 315

    check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'input')
D
dzhwinter 已提交
316 317 318 319
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
320
        param_attr=param_attr,
321
        bias_attr=bias_attr,
322
        act=act)
D
dzhwinter 已提交
323

324
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
325
    return pool_out
G
guosheng 已提交
326 327 328 329


def glu(input, dim=-1):
    """
S
swtkiwi 已提交
330 331
	:api_attr: Static Graph

Y
Yibing Liu 已提交
332 333 334
    The Gated Linear Units(GLU) composed by :ref:`api_fluid_layers_split` , 
    :ref:`api_fluid_layers_sigmoid`  and :ref:`api_fluid_layers_elementwise_mul` . 
    Specifically, GLU will plit the input into two equal-sized parts,
C
chengduoZH 已提交
335
    :math:`a` and :math:`b`, along the given dimension and then compute as
G
guosheng 已提交
336
    following:
G
guosheng 已提交
337 338 339 340 341

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

Y
ying 已提交
342
    Refer to `Language Modeling with Gated Convolutional Networks
G
guosheng 已提交
343
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
Y
ying 已提交
344

G
guosheng 已提交
345
    Args:
Y
Yibing Liu 已提交
346 347 348 349
        input (Variable): The input variable which is a Tensor or LoDTensor. 
                          The supported data types include float32, float64 
                          and float16 (only for GPU).
        dim (int, optional): The dimension along which to split. If :math:`dim < 0`, the
C
chengduoZH 已提交
350
            dimension to split along is :math:`rank(input) + dim`. Default -1.
G
guosheng 已提交
351 352

    Returns:
Y
Yibing Liu 已提交
353
        Variable: Variable with half the size and same data type of input.
G
guosheng 已提交
354 355 356 357

    Examples:
        .. code-block:: python

358
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
359
            data = fluid.data(
Y
Yibing Liu 已提交
360 361 362
                name="words", shape=[-1, 6, 3, 9], dtype="float32")
            # shape of output: [-1, 3, 3, 9]
            output = fluid.nets.glu(input=data, dim=1)
G
guosheng 已提交
363
    """
364 365
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             "glu")
G
guosheng 已提交
366
    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
367 368
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
369
    return out
370 371


Y
ying 已提交
372 373 374
def scaled_dot_product_attention(queries,
                                 keys,
                                 values,
Y
ying 已提交
375
                                 num_heads=1,
Y
ying 已提交
376
                                 dropout_rate=0.):
377
    """
S
swtkiwi 已提交
378 379
	:api_attr: Static Graph

G
Guo Sheng 已提交
380
    This interface Multi-Head Attention using scaled dot product.
381
    Attention mechanism can be seen as mapping a query and a set of key-value
G
Guo Sheng 已提交
382 383 384
    pairs to an output. Multi-Head Attention performs attention using multi-head
    parallel, and the inputs of attention would be transformed by linear projection.
    The formula is as follows:
Y
ying 已提交
385

G
Guo Sheng 已提交
386
    .. math::
387

G
Guo Sheng 已提交
388 389 390
        MultiHead(Q, K, V ) & = Concat(head_1, ..., head_h)

        where \  head_i & = Attention(QW_i^Q , KW_i^K , VW_i^V )
391

G
Guo Sheng 已提交
392
        Attention(Q, K, V) & = softmax (\\frac{QK^\mathrm{T}}{\sqrt{d_k}}) V
393

G
Guo Sheng 已提交
394 395 396 397 398 399
    For more details, please refer to `Attention Is All You Need
    <https://arxiv.org/pdf/1706.03762.pdf>`_ .

    Note that the implementation is adapted to batch, and all matrix multiplication
    in :math:`Attention(Q, K, V)` is batched matrix multiplication. Refer to
    :ref:`api_fluid_layers_matmul` .
400

Y
ying 已提交
401
    Args:
G
Guo Sheng 已提交
402 403 404 405 406 407 408 409 410 411 412 413
        queries (Variable): A 3-D Tensor with shape :math:`[N, L_q, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_q` for the sequence length
            of query, :math:`d_k \\times h` for the feature size of query, :math:`h` for
            head number. The data type should be float32 or float64.
        keys (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_k \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_k \\times h` for the feature size of key, :math:`h` for head
            number. The data type should be the same as ``queries`` .
        values (Variable): A 3-D Tensor with shape :math:`[N, L_k, d_v \\times h]` ,
            where :math:`N` stands for batch size, :math:`L_k` for the sequence length
            of key, :math:`d_v \\times h` for the feature size of value, :math:`h` for head
            number. The data type should be the same as ``queries`` .
T
tianshuo78520a 已提交
414
        num_heads (int, optional): Indicate the number of head. If the number
G
Guo Sheng 已提交
415 416 417
            is 1, linear projection would not be performed on inputs. Default: 1.
        dropout_rate (float, optional): The rate to drop the attention weight.
            Default: 0.0, which means no dropout.
418 419

    Returns:
G
Guo Sheng 已提交
420 421 422 423 424
        Variable: A 3-D Tensor with shape :math:`[N, L_q, d_v \\times h]` , \
            where :math:`N` stands for batch size, :math:`L_q` for the sequence \
            length of query, :math:`d_v \\times h` for the feature size of value. \
            It has the same data type with inputs, representing the output of \
            Multi-Head Attention.
425

Y
ying 已提交
426
    Raises:
427
        TypeError: The dtype of inputs keys, values and queries should be the same.
T
tianshuo78520a 已提交
428
        ValueError: Inputs queries, keys and values should all be 3-D tensors.
G
Guo Sheng 已提交
429
        ValueError: The hidden size of queries and keys should be the same.
430
        ValueError: The max sequence length in value batch and in key batch should be the same.
G
Guo Sheng 已提交
431 432
        ValueError: he hidden size of keys must be divisible by the number of attention heads.
        ValueError: he hidden size of values must be divisible by the number of attention heads.
Y
ying 已提交
433

434 435 436
    Examples:
        .. code-block:: python

437 438
            import paddle.fluid as fluid

G
Guo Sheng 已提交
439 440 441
            queries = fluid.data(name="queries", shape=[3, 5, 9], dtype="float32")
            keys = fluid.data(name="keys", shape=[3, 6, 9], dtype="float32")
            values = fluid.data(name="values", shape=[3, 6, 10], dtype="float32")
C
chengduoZH 已提交
442
            contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
Y
ying 已提交
443
            contexts.shape  # [3, 5, 10]
444
    """
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    check_variable_and_dtype(queries, 'queries', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(keys, 'keys', ['float32', 'float64'],
                             "scaled_dot_product_attention")
    check_variable_and_dtype(values, 'values', ['float32', 'float64'],
                             "scaled_dot_product_attention")

    if not (queries.dtype == keys.dtype == values.dtype):
        raise TypeError(
            "The dtype of keys, values and queries should be the same."
            "But received queries.dtype = %s, "
            " keys.dtype = %s, values.dtype) = %s." %
            (convert_dtype(queries.dtype), convert_dtype(keys.dtype),
             convert_dtype(values.dtype)))

Y
ying 已提交
460 461
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
462 463 464 465
            "Inputs queries, keys and values should all be 3-D tensors."
            "But received len(queries.shape) = %d, "
            "len(keys.shape) = %d, len(values.shape) = %d." %
            (len(queries.shape), len(keys.shape), len(values.shape)))
Y
ying 已提交
466 467 468

    if queries.shape[-1] != keys.shape[-1]:
        raise ValueError(
469 470 471
            "The hidden size of queries and keys should be the same."
            "But received queries' hidden size = %d and keys' hidden size = %d."
            % (queries.shape[-1], keys.shape[-1]))
Y
ying 已提交
472 473
    if keys.shape[-2] != values.shape[-2]:
        raise ValueError(
474 475 476
            "The max sequence length in value batch and in key batch "
            "should be the same. But received max sequence length in value batch "
            "= %d, in key batch = %d." % (values.shape[-2], keys.shape[-2]))
Y
ying 已提交
477 478 479 480 481 482 483 484 485
    if keys.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of keys (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (keys.shape[-1], num_heads))
    if values.shape[-1] % num_heads != 0:
        raise ValueError("The hidden size of values (%d) must be divisible "
                         "by the number of attention heads (%d)." %
                         (values.shape[-1], num_heads))

Y
ying 已提交
486
    def __compute_qkv(queries, keys, values, num_heads):
Y
ying 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        """
        Add linear projection to queries, keys, and values.

        Args:
            queries(Tensor): a 3-D input Tensor.
            keys(Tensor): a 3-D input Tensor.
            values(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads. Linearly project the inputs
                            ONLY when num_heads > 1.

        Returns:
            Tensor: linearly projected output Tensors: queries', keys' and
                    values'. They have the same shapes with queries, keys and
                    values.
        """

Y
ying 已提交
503 504 505 506 507 508 509 510
        if num_heads == 1:
            return queries, keys, values

        q = layers.fc(input=queries, size=queries.shape[-1], num_flatten_dims=2)
        k = layers.fc(input=keys, size=keys.shape[-1], num_flatten_dims=2)
        v = layers.fc(input=values, size=values.shape[-1], num_flatten_dims=2)
        return q, k, v

Y
ying 已提交
511 512
    def __split_heads(x, num_heads):
        """
T
tianshuo78520a 已提交
513
        Reshape the last dimension of input tensor x so that it becomes two
Y
ying 已提交
514 515 516
        dimensions.

        Args:
Y
ying 已提交
517 518
            x(Tensor): a 3-D input Tensor.
            num_heads(int): The number of heads.
Y
ying 已提交
519 520

        Returns:
Y
ying 已提交
521 522
            Tensor: a Tensor with shape [..., n, m/num_heads], where m is size
                    of the last dimension of x.
Y
ying 已提交
523
        """
Y
ying 已提交
524 525
        if num_heads == 1:
            return x
526

Y
ying 已提交
527
        hidden_size = x.shape[-1]
528 529 530
        # reshape the 3-D input: [batch_size, max_sequence_length, hidden_dim]
        # into a 4-D output:
        # [batch_size, max_sequence_length, num_heads, hidden_size_per_head].
Y
ying 已提交
531
        reshaped = layers.reshape(
532 533
            x=x,
            shape=list(x.shape[:-1]) + [num_heads, hidden_size // num_heads])
534

T
tianshuo78520a 已提交
535
        # permute the dimensions into:
536 537 538 539
        # [batch_size, num_heads, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
Y
ying 已提交
540
        """
T
tianshuo78520a 已提交
541
        Reshape the last two dimensions of input tensor x so that it becomes
Y
ying 已提交
542 543 544 545 546 547 548 549 550 551 552
        one dimension.

        Args:
            x(Tensor): a 4-D input Tensor with shape
                       [bs, num_heads, max_sequence_length, hidden_dim].

        Returns:
            Tensor: a Tensor with shape
                    [bs, max_sequence_length, num_heads * hidden_dim].
        """

Y
ying 已提交
553
        if len(x.shape) == 3: return x
554 555 556
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

Y
ying 已提交
557
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
Y
ying 已提交
558
        return layers.reshape(
559
            x=trans_x,
560 561 562 563 564
            shape=list(
                map(int, [
                    trans_x.shape[0], trans_x.shape[1], trans_x.shape[2] *
                    trans_x.shape[3]
                ])))
565

Y
ying 已提交
566 567 568 569 570
    q, k, v = __compute_qkv(queries, keys, values, num_heads)

    q = __split_heads(q, num_heads)
    k = __split_heads(k, num_heads)
    v = __split_heads(v, num_heads)
Y
ying 已提交
571 572

    key_dim_per_head = keys.shape[-1] // num_heads
573
    scaled_q = layers.scale(x=q, scale=key_dim_per_head**-0.5)
574
    product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
Y
ying 已提交
575

Y
ying 已提交
576
    weights = layers.reshape(
577
        x=layers.reshape(
Y
ying 已提交
578
            x=product, shape=[-1, product.shape[-1]], act="softmax"),
579
        shape=product.shape)
Y
ying 已提交
580
    if dropout_rate:
G
guosheng 已提交
581 582
        weights = layers.dropout(
            weights, dropout_prob=dropout_rate, is_test=False)
Y
ying 已提交
583 584
    ctx_multiheads = layers.matmul(weights, v)
    return __combine_heads(ctx_multiheads)