program_translator.py 58.8 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import collections
16
import inspect
17 18
import textwrap
import threading
19
import warnings
20
import weakref
21

22
from paddle.amp.auto_cast import _in_amp_guard
23
from paddle.fluid import _non_static_mode, core, framework
24
from paddle.fluid.data_feeder import check_type
25 26 27 28 29
from paddle.fluid.dygraph.base import (
    _switch_declarative_mode_guard_,
    param_guard,
    switch_to_static_graph,
)
30
from paddle.nn.layer import layers
31
from paddle.utils import flatten, gast
32 33 34 35 36 37 38 39 40

from . import error, logging_utils
from .ast_transformer import DygraphToStaticAst
from .function_spec import (
    FunctionSpec,
    _hash_spec_names,
    get_buffers,
    get_parameters,
)
41
from .origin_info import (
42 43 44 45
    attach_origin_info,
    create_and_update_origin_info_map,
    update_op_callstack_with_origin_info,
)
X
xiongkun 已提交
46
from .partial_program import PartialProgramLayerHook, partial_program_from
47
from .utils import (
48
    ALREADY_D2S,
49 50 51 52
    ast_to_func,
    ast_to_source_code,
    func_to_source_code,
    input_specs_compatible,
53
    is_paddle_func,
54
    make_hashable,
55
    prim_or_cinn_is_enabled,
56 57
    type_name,
    unwrap,
58
)
59

60
__all__ = []
61

62 63 64 65
# For each traced function, we set `max_traced_program_count` = 10 to consider caching performance.
# Once exceeding the threshold, we will raise warning to users to make sure the conversion is as expected.
MAX_TRACED_PROGRAM_COUNT = 10

66 67
CONVERSION_OPTIONS = "__jst_not_to_static"

68

69 70 71 72 73 74 75 76 77 78
def synchronized(func):
    func.__lock__ = threading.Lock()

    def lock_func(*args, **kwargs):
        with func.__lock__:
            return func(*args, **kwargs)

    return lock_func


79
class FunctionCache:
80 81 82 83 84
    """
    Caches the transformed functions to avoid redundant conversions of the same function.
    """

    def __init__(self):
85
        # Caches the converted static functions. {dygraph_func: static_func}
X
xiongkun 已提交
86
        self._converted_static_func_caches = weakref.WeakKeyDictionary()
87
        # Caches the converted ast node for same source code. {source_code: ast_root}
88
        self._code_to_ast_caches = {}
89
        self._dygraph_to_static = DygraphToStaticAst()
90

91 92 93 94 95 96
    def convert_with_cache(self, func):
        """
        Returns the cached static function or converts it when first encounters the function.
        """
        # If hit cache, return it directly.
        static_func = self._converted_static_func_caches.get(func, None)
97 98

        if static_func is None:
99 100
            static_func = self._convert(func)
            self._converted_static_func_caches[func] = static_func
101 102 103

        return static_func

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def _convert(self, func):
        """
        Converts dygraph function into static function. For two functions with same dedent code,
        the second function will reuse the transformed ast node of previous one.

        For example:
            # A.py
            def foo(x, y):
                z = x + y
                return z

            # B.py
            def foo(x, y):
                z = x + y
                return z

        If the conversion of A.foo happens after B.foo, it will reuse the transformed ast node of B.foo
        to speed up the conversion.
        """
        # Note: In Python2, it will raise OSError when inspect function
        # with decorator directly and function.__wrapped__ holds the actual function.
125
        func = unwrap(func)
126
        source_code = func_to_source_code(func)
127 128 129 130 131

        # TODO(liym27):
        #  Consider this case: source_code in self._code_to_ast_caches,
        #  but actually they are methods in different classes.
        #  Maybe use (__class__, source_code) as key
132 133 134 135
        if source_code in self._code_to_ast_caches:
            root_wrapper = self._code_to_ast_caches[source_code]
        else:
            root = gast.parse(source_code)
136
            root = attach_origin_info(root, func)
137 138
            root_wrapper = self._dygraph_to_static.get_static_ast(root)
            self._code_to_ast_caches[source_code] = root_wrapper
139

140 141
        # Get static function from AST
        static_func, file_name = ast_to_func(root_wrapper.node, func)
142 143

        create_and_update_origin_info_map(root_wrapper.node, static_func)
144
        return static_func
145 146

    def exist(self, func):
147
        return func in self._converted_static_func_caches
148 149


150 151 152 153
_CACHE_LOCK = threading.Lock()
_FUNCTION_CACHE = FunctionCache()


154
def convert_to_static(function):
155
    """
156
    Transforms function of dygraph into static function using the cache mechanism.
157

158 159
    Note(dev): It will return function.__func__ if encountering class method.

160 161
    Args:
        function(callable): The function with dygraph layers that will be converted into static layers.
162
    """
163 164
    if getattr(function, ALREADY_D2S, None):
        return function
165 166 167

    # Return directly if decorated with @not_to_static and DO NOT Cache it
    options = getattr(function, CONVERSION_OPTIONS, None)
168 169 170 171 172
    # or ignore paddle api
    need_skip = (options is not None and options.not_convert) or is_paddle_func(
        function
    )
    if need_skip:
173 174
        return function.__func__ if inspect.ismethod(function) else function

175
    with _CACHE_LOCK:
176
        static_func = _FUNCTION_CACHE.convert_with_cache(function)
177
        setattr(static_func, ALREADY_D2S, True)
178 179 180
        return static_func


181
class CacheKey:
182 183 184
    """
    Cached key for ProgramCache.
    """
185

186
    __slots__ = [
187 188 189 190 191 192
        'function_spec',
        'input_args_with_spec',
        'input_kwargs_with_spec',
        'class_instance',
        'kwargs',
        '_spec_names_id',
193
    ]
194

195 196 197 198 199 200
    def __init__(
        self,
        function_spec,
        input_args_with_spec,
        input_kwargs_with_spec,
        class_instance,
201
        **kwargs,
202
    ):
203 204
        """
        Initializes a cache key.
205

206 207
        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
208 209
            input_args_with_spec(list[InputSpec]): actual input args with some arguments replaced by InputSpec.
            input_kwargs_with_spec(list[{string:InputSpec}]): actual input kwargs with some arguments replaced by InputSpec.
210
            class_instance(object): a instance of class `Layer`.
211
            **kwargs(dict): manage other arguments used for better scalability
212
        """
213
        self.function_spec = function_spec
214 215
        self.input_args_with_spec = input_args_with_spec
        self.input_kwargs_with_spec = input_kwargs_with_spec
216
        self.class_instance = class_instance
217 218
        # NOTE: `kwargs` is usually not considered as basic member for `__hash__`
        self.kwargs = kwargs
219 220 221
        self._spec_names_id = _hash_spec_names(
            input_args_with_spec, input_kwargs_with_spec
        )
222 223 224

    @classmethod
    def from_func_and_args(cls, function_spec, args, kwargs, class_instance):
225
        """
226 227 228 229 230 231 232 233 234 235 236
        Generated a CacheKey instance by given inputs.

        Args:
            functions_spec(FunctionSpec): a FunctionSpec instance of decorated function.
            args(tuple): tuple of actual inputs arguments.
            kwargs(dict): dict of actual inputs keyword arguments.
            class_instance(object): a instance of class `Layer`.
        """
        # 1. filter `self` in args
        if args and isinstance(args[0], layers.Layer):
            args = args[1:]
237
        # 2. convert tensor and numpy array into InputSpec
238
        _args, _kwargs = function_spec.unified_args_and_kwargs(args, kwargs)
239 240 241 242
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = function_spec.args_to_input_spec(_args, _kwargs)
243 244

        # 3. check whether hit the cache or build a new program for the input arguments
245 246 247 248 249 250
        return CacheKey(
            function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            class_instance,
        )
251 252 253

    def __hash__(self):
        error_msg = "Arguments to a `@paddle.jit.to_static` must be a hashable Python objects (or nested structures of these types)."
254
        with_hook = self.kwargs.get("with_hook", False)
255
        is_train = self.kwargs.get("is_train", False)
256 257 258 259 260 261 262 263 264 265 266
        return hash(
            (
                id(self.function_spec),
                make_hashable(self.input_args_with_spec, error_msg),
                make_hashable(self.input_kwargs_with_spec, error_msg),
                self._spec_names_id,
                self.class_instance,
                with_hook,
                is_train,
            )
        )
267 268 269 270 271 272 273 274

    def __eq__(self, other):
        return (type(self) is type(other)) and hash(self) == hash(other)

    def __neq__(self, other):
        return not self == other

    def __repr__(self):
275
        return "id(function_spec): {}, input_args_with_spec: {}, input_kwargs_with_spec: {}, class_instance: {}".format(
276 277 278 279 280
            id(self.function_spec),
            self.input_args_with_spec,
            self.input_kwargs_with_spec,
            self.class_instance,
        )
281 282 283 284 285 286 287 288 289


def unwrap_decorators(func):
    """
    Unwraps a decorated function and returns the decorator list and inner target.
    """
    decorators = []
    cur = func
    while True:
290
        if isinstance(cur, StaticFunction):
291 292 293 294 295
            decorators.append(cur)
            # Note: if `cur` is a method, keep it as bound method of class.
            instance = cur._class_instance
            if instance is not None:
                cur = cur.dygraph_function.__get__(instance)
296
            else:
297 298 299 300
                cur = cur.dygraph_function
        else:
            break
    return decorators, cur
301

302

303
class StaticFunction:
304 305 306 307 308
    """
    Wrapper class to Manage program conversion of decorated function.

    """

309
    def __init__(self, function, input_spec=None, **kwargs):
310
        """
311
        Initializes a `StaticFunction`.
312 313 314 315

        Args:
            function(callable): A function or method that will be converted into static program.
            input_spec(list[InputSpec]): list of InputSpec to specify the `shape/dtype/name` information for each input argument, default None.
316
            **kwargs(dict): other arguments like `build_strategy` et.al.
317 318
        """
        # save the instance `self` while decorating a method of class.
319

320
        if inspect.ismethod(function):
321 322
            self._dygraph_function = function.__func__
            self._class_instance = function.__self__
323

324 325 326
            if not hasattr(self._class_instance, '_original_funcs'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
327 328
                    "please ensure the class inherits from nn.Layer"
                )
329
            self._class_instance._original_funcs[
330 331
                function.__name__
            ] = self._dygraph_function
332 333 334 335
        else:
            self._dygraph_function = function
            self._class_instance = None

336 337 338
        if input_spec is not None and prim_or_cinn_is_enabled(
            kwargs.get("build_strategy", None)
        ):
J
Jiabin Yang 已提交
339 340
            from paddle.static import InputSpec

341
            for spec in flatten(input_spec):
J
Jiabin Yang 已提交
342
                if isinstance(spec, InputSpec) and -1 in spec.shape:
343 344 345 346 347 348
                    input_spec = None
                    warnings.warn(
                        'Now prim and cinn do not support -1 shape, but input_spec has -1 shape so we set it to None.'
                    )
                    break

349 350 351
        self._input_spec = input_spec
        self._function_spec = FunctionSpec(function, input_spec)
        self._program_cache = ProgramCache()
352
        self._descriptor_cache = weakref.WeakKeyDictionary()
353
        # Note: Hold a reference to ProgramTranslator for switching `enable_to_static`.
354
        self._program_trans = ProgramTranslator()
355
        self._kwargs = kwargs
356
        self._training = True
357 358
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
359

360 361 362 363 364 365 366
        self._property = kwargs.get("property", False)

    @property
    def is_property(self):
        # whether is class proproty to be exported.
        return self._property

367
    def train(self):
368 369
        if (
            isinstance(self._class_instance, layers.Layer)
370
            and self._class_instance.training is False
371
        ):
372 373 374
            raise RuntimeError(
                "Failed to switch train mode. {} is a Layer's method, "
                "please use Layer.train() to switch train mode.".format(
375 376 377
                    self.dygraph_function
                )
            )
378 379 380
        self._training = True

    def eval(self):
381 382
        if (
            isinstance(self._class_instance, layers.Layer)
383
            and self._class_instance.training is True
384
        ):
385 386 387
            raise RuntimeError(
                "Failed to switch eval mode. {} is a Layer's method, "
                "please use Layer.eval() to switch eval mode.".format(
388 389 390
                    self.dygraph_function
                )
            )
391
        self._training = False
392 393 394 395 396 397

    def __get__(self, instance, owner):
        """
        Overrides this method to parse the class instance and call bound method correctly.

        For example:
398

399 400 401 402
            '''
            class Net(Layer):
                def __init__(self):
                    pass
403

404 405 406 407 408 409 410
                @paddle.jit.to_static
                def forward(self, x, y):
                    return x + y

            net = Net()
            out = net(x, y)
            '''
411

412 413
        In above case, `net(x, y)` will call `net.forward(x, y)` firstly that is a bound method
        of `Net` instance. After decorated by `@paddle.jit.to_static`, it will firstly to call `__get__`
414
        to parse the class instance correctly instead of the `StaticFunction` instance.
415
        """
416 417 418
        if instance not in self._descriptor_cache:
            if instance is None:
                return self
419
            # Note(Aurelius84): To construct new instance of StaticFunction when we
420 421 422 423 424 425 426 427
            # first encouter the bound function of layer and cache it.
            new_static_layer = self._clone()
            new_static_layer._class_instance = instance
            self._descriptor_cache[instance] = new_static_layer

        return self._descriptor_cache[instance]

    def _clone(self):
428
        return self.__class__(
429
            self.dygraph_function, self._input_spec, **self._kwargs
430
        )
431 432

    def __call__(self, *args, **kwargs):
433
        """
434 435 436 437
        Supports to call the returned instance with input `args` and `kwargs` directly.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
438
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
439 440 441

        Return:
            Outputs of decorated function.
442
        """
443 444
        if self._property:
            return self._call_dygraph_function(*args, **kwargs)
445

446
        # 1. call dygraph function directly if not enable `declarative`
447
        if not self._program_trans.enable_to_static:
448 449 450 451
            # NOTE(liym27):
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**. StaticFunction.__call__ will run many times, it is appropriate to
            # display this warning message only once.
452
            logging_utils.warn(
R
Ryan 已提交
453
                "The decorator '@paddle.jit.to_static' does NOT work when setting 'paddle.jit.enable_to_static' to False. "
454
                "We will just return dygraph output. If you would like to get static graph output, please call API "
R
Ryan 已提交
455
                "paddle.jit.enable_to_static(True)"
456
            )
457 458
            return self._call_dygraph_function(*args, **kwargs)

J
Jiabin Yang 已提交
459
        if not _non_static_mode():
460 461
            raise RuntimeError(
                "Failed to run the callable object {} decorated by '@paddle.jit.to_static', "
462
                "because it is NOT in dynamic mode. Please disable the static graph mode to enter dynamic mode with the "
463
                "following API: paddle.disable_static().".format(
464 465 466
                    self.dygraph_function
                )
            )
467

468 469
        # 2. trace ops from dygraph layers and cache the generated program.
        args, kwargs = self._function_spec.unified_args_and_kwargs(args, kwargs)
470

471 472
        try:
            concrete_program, partial_program_layer = self.get_concrete_program(
473 474
                *args, **kwargs, is_train=self._is_train_mode()
            )
475 476 477
            # 3. synchronize self.training attribute.
            if isinstance(self._class_instance, layers.Layer):
                partial_program_layer.training = self._class_instance.training
478 479
            else:
                partial_program_layer.training = self._training
480

481 482 483
            partial_program_layer._cuda_graph_capture_mode = (
                self._cuda_graph_capture_mode
            )
484 485
            partial_program_layer._cuda_graph_pool_id = self._cuda_graph_pool_id

486
            # 4. return outputs.
487 488 489 490 491 492 493
            try:
                return partial_program_layer(args)
            except Exception as e:
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                    raise
494
        except Exception as e:
495
            error_data = getattr(e, error.ERROR_DATA, None)
496
            if error_data:
497
                error_data.raise_new_exception()
498
            else:
499 500
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
501 502
                    " if you can't handle this {} yourself.".format(type(e))
                )
503
                raise e
504

505 506
    def _is_train_mode(self):
        if self._class_instance is not None:
507 508 509
            if not hasattr(self._class_instance, 'training'):
                raise TypeError(
                    "When using 'to_static' to convert method of a class, "
510 511
                    "please ensure the class inherits from nn.Layer"
                )
512 513 514 515
            return self._class_instance.training
        else:
            return self._training

516 517 518 519 520 521
    def _call_dygraph_function(self, *args, **kwargs):
        """
        Calls dygraph function directly and returns the outputs.

        Args:
            *args(tuple): tuple of all input arguments from original decorated function.
522
            **kwargs(dict): dict of all input keyward arguments from original decorated function.
523 524 525 526

        Return:
            Outputs of dygraph function.
        """
527
        return self.dygraph_function(*args, **kwargs)
528

529 530 531 532 533 534 535 536 537
    def _raise_when_property(self):
        """raise RuntimeError when property=True

        Raises:
            RuntimeError: can not call this func when property=True
        """
        if self.is_property:
            raise RuntimeError("Can not call the func when property=True.")

538 539 540 541 542 543 544 545 546 547 548
    def get_concrete_program(self, *args, **kwargs):
        """
        Returns traced concrete program and inner executable partial layer.

        Args:
            *args(tuple): input arguments values or InputSpec
            **kwargs(dict) : input kwargs values.

        Returns:
            Traced ConcreteProgram and executable translated Layer.
        """
549
        self._raise_when_property()
550

551
        with_hook = kwargs.get("with_hook", False)
552
        is_train = kwargs.get("is_train", True)
553 554 555 556
        if "is_train" in kwargs:
            kwargs.pop("is_train")
        if "with_hook" in kwargs:
            kwargs.pop("with_hook")
557 558
        # 1. unify args/kwargs and replace Tensor with InputSpec
        if len(args) != len(self._function_spec.args_name):
559
            args, kwargs = self._function_spec.unified_args_and_kwargs(
560 561 562 563 564 565
                args, kwargs
            )
        (
            input_args_with_spec,
            input_kwargs_with_spec,
        ) = self._function_spec.args_to_input_spec(args, kwargs)
566 567

        # 2. generate cache key
568 569 570 571 572 573 574
        cache_key = CacheKey(
            self._function_spec,
            input_args_with_spec,
            input_kwargs_with_spec,
            self._class_instance,
            **self._kwargs,
            with_hook=with_hook,
575
            is_train=is_train,
576
        )
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

        # 3. check whether hit the cache or build a new program for the input arguments
        concrete_program, partial_program_layer = self._program_cache[cache_key]
        return concrete_program, partial_program_layer

    def get_traced_count(self):
        """
        Returns the number of traced programs for the decorated function.
        """
        return len(self._program_cache)

    @property
    def code(self):
        """
        Returns the source code of transformed static function for debugging.
        """
593
        static_func = convert_to_static(self.dygraph_function)
594 595 596 597 598 599 600 601
        source_code = func_to_source_code(static_func)
        return source_code

    @property
    def dygraph_function(self):
        """
        Returns the original decorated function.
        """
602 603 604 605
        if self._class_instance is not None:
            return self._dygraph_function.__get__(self._class_instance)
        else:
            return self._dygraph_function
606 607 608 609 610

    @property
    def concrete_program(self):
        """
        Returns recent ConcreteProgram instance of decorated function.
A
Aurelius84 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623

        Examples:
            .. code-block:: python

                import paddle
                from paddle.jit import to_static
                from paddle.static import InputSpec

                paddle.disable_static()

                def foo(x, y):
                    z = x + y
                    return z
624

A
Aurelius84 已提交
625 626 627 628 629 630 631 632
                # usage 1:
                decorated_foo = to_static(foo, input_spec=[InputSpec([10], name='x'), InputSpec([10], name='y')])
                print(decorated_foo.concrete_program)

                # usage 2:
                decorated_foo = to_static(foo)
                out_foo = decorated_foo(paddle.rand([10]), paddle.rand([10]))
                print(decorated_foo.concrete_program)
633
        """
634 635
        return self.concrete_program_specify_input_spec(input_spec=None)

636 637 638
    def concrete_program_specify_input_spec(
        self, input_spec=None, with_hook=False
    ):
639 640 641
        """
        Returns recent ConcreteProgram instance of decorated function while
        specifying input_spec. If the self._function_spec already has
642
        input_spec, it will check the compatibility of input input_spec and
643 644 645 646 647 648 649
        the self._function_spec.input_spec. If input input_spec=None, then
        this method uses self._function_spec.input_spec

        args:
            input_spec (list[InputSpec], optional): Describes the input of
                the translate function.
        """
650
        self._raise_when_property()
651 652 653 654 655
        # if specific the `input_spec`, the length of program_cache will always 1,
        # else, return the last one.
        cached_program_len = len(self._program_cache)
        # If specific `input_spec`, apply convertion from dygraph layers into static Program.
        if cached_program_len == 0:
C
Chen Weihang 已提交
656 657 658
            desired_input_spec = input_spec
            if self._function_spec.input_spec is not None:
                if input_spec is not None and not input_specs_compatible(
659 660
                    flatten(input_spec), flatten(self._function_spec.input_spec)
                ):
661
                    raise ValueError(
662 663 664 665
                        "The `input_spec`: {} used to construct concrete_program is conflict with the `input_spec`: {} in `@paddle.jit.to_static`".format(
                            input_spec, self._function_spec.input_spec
                        )
                    )
C
Chen Weihang 已提交
666 667 668
                # NOTE(chenweihang): we should always translated program based on the `input_spec`
                # decorated on forward if it is valid
                desired_input_spec = self._function_spec.input_spec
669 670
                if input_spec is not None:
                    logging_utils.warn(
671 672 673 674
                        "\n\nYou have specified `input_spec` both in function definition (higher priority) and `paddle.jit.save` (will be ignored.)\n\n\t Using: {}\n\n\t Ignore: {}\n".format(
                            desired_input_spec, input_spec
                        )
                    )
675

676
            has_input_spec = desired_input_spec is not None
A
Aurelius84 已提交
677
            if has_input_spec:
C
Chen Weihang 已提交
678
                concrete_program, _ = self.get_concrete_program(
679 680
                    *desired_input_spec,
                    with_hook=with_hook,
681
                    is_train=self._is_train_mode(),
682
                )
683
                return concrete_program
684
            else:
A
Aurelius84 已提交
685
                raise ValueError(
686 687 688 689
                    "No valid transformed program for {}.\n\t    Please specific `input_spec` in `@paddle.jit.to_static` or feed input tensor to call the decorated function at once.\n".format(
                        self._function_spec
                    )
                )
690 691 692 693 694 695
        elif with_hook:
            cache_key = self._program_cache._recent_cache_key
            cache_key.kwargs["with_hook"] = True
            concrete_program, _ = self._program_cache[cache_key]
            return concrete_program

696 697
        # If more than one programs have been cached, return the recent converted program by default.
        elif cached_program_len > 1:
698
            logging_utils.warn(
699 700 701 702
                "Current {} has more than one cached programs: {}, the last traced progam will be return by default.".format(
                    self._function_spec, cached_program_len
                )
            )
703

704 705 706 707
        cache_key, (
            concrete_program,
            partial_layer,
        ) = self._program_cache.last()
708
        return concrete_program
709

710 711 712
    def rollback(self):
        """
        Rollback into original dygraph functions for current class instance.
713

714 715 716 717 718 719 720 721 722 723
        Returns:
            Function or Method

        Example::
            .. code-block:: python

                import paddle

                class Net(paddle.nn.Layer):
                    def __init__(self):
724
                        super().__init__()
725 726 727 728 729 730 731 732 733

                    def forward(self, x, flag=True):
                        if flag:
                            out = x + 1
                        else:
                            out = x - 1
                        return out

                x = paddle.randn([10, 1], 'float32')
734
                net = paddle.jit.to_static(Net())  # convert into static graph mode
735
                out = net(x)
736

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
                net.forward.rollback()  # rollback into dygraph mode
                out = net(x)
        """

        def rollback_impl(class_instance):
            for name, func in class_instance._original_funcs.items():
                setattr(class_instance, name, func.__get__(class_instance))

            for sublayer in class_instance.sublayers(include_self=False):
                rollback_impl(sublayer)

        if self._class_instance is None:
            return self._dygraph_function

        # only rollback sub-functions on path of top _dygraph_function
        func_name = self._dygraph_function.__name__
753 754 755 756 757
        assert (
            func_name in self._class_instance._original_funcs
        ), "Not Found function '{}' in class '{}'.".format(
            func_name, self._class_instance.__name__
        )
758
        func = self._class_instance._original_funcs[func_name]
759 760 761
        setattr(
            self._class_instance, func_name, func.__get__(self._class_instance)
        )
762 763 764 765 766 767

        for sublayer in self._class_instance.sublayers(include_self=False):
            rollback_impl(sublayer)

        return getattr(self._class_instance, func_name)

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    def __deepcopy__(self, memo):
        """
        Customized behavior for copy.deepcopy, return original decorated function instead
        of a new StaticFunction Object. StaticFunction itself is not copyable becuase it's
        associated with class_instance.

        We add __deepcopy__ here only for the following usage:

        Example::
            .. code-block:: python

                import copy
                import paddle

                class Net(paddle.nn.Layer):
                    def __init__(self):
784
                        super().__init__()
785 786 787 788 789 790 791 792 793

                    def forward(self, x, flag=True):
                        if flag:
                            out = x + 1
                        else:
                            out = x - 1
                        return out

                x = paddle.randn([10, 1], 'float32')
794
                net = paddle.jit.to_static(Net())  # convert into static graph mode
795 796

                copy_net = copy.deepcopy(net)      # deepcopy a new net without @to_static
797

798 799 800 801 802 803
        Please attention that original 'net' will unwrap @to_static and rollback into simple Layer.
        """
        if self._class_instance is not None:
            net_name = type(self._class_instance).__name__
            logging_utils.log(
                level=-1,
804 805 806 807 808
                msg="Not recommend to deepcopy '{}' decorated with @to_static, it has side effect that will"
                " rollback into original state before @to_static. Please deepcopy '{}' before applying @to_static.".format(
                    net_name, net_name
                ),
            )
809
            self.rollback()
810 811 812
            return self._dygraph_function.__get__(
                memo[id(self._class_instance)]
            )
813 814 815
        else:
            return self._dygraph_function

816 817 818 819 820
    @property
    def inputs(self):
        """
        Returns input tensors of recent converted static program.
        """
821
        self._raise_when_property()
822 823
        concrete_program = self.concrete_program
        inputs = [
824 825
            var
            for var in flatten(concrete_program.inputs)
826 827 828
            if isinstance(var, framework.Variable)
        ]
        return inputs
829

830
    @property
831 832 833 834
    def outputs(self):
        """
        Returns output tensors of recent converted static program.
        """
835
        self._raise_when_property()
836 837
        concrete_program = self.concrete_program
        outputs = [
838 839
            var
            for var in flatten(concrete_program.outputs)
840 841 842 843
            if isinstance(var, framework.Variable)
        ]

        return outputs
844

845
    @property
846 847 848 849
    def main_program(self):
        """
        Returns recent converted static main program.
        """
850
        self._raise_when_property()
851 852 853
        concrete_program = self.concrete_program
        main_program = concrete_program.main_program
        return main_program
854

855 856 857
    @property
    def program_cache(self):
        return self._program_cache
858

859 860 861
    @property
    def function_spec(self):
        return self._function_spec
862 863


864 865 866 867 868 869 870 871 872 873
def _verify_init_in_dynamic_mode(class_instance):
    """
    Verifies the instance is initialized in dynamic mode.
    """
    if isinstance(class_instance, layers.Layer):
        if not class_instance._init_in_dynamic_mode:
            raise RuntimeError(
                " `paddle.jit.to_static` is only available in dynamic mode. Please call `paddle.disable_static()` before "
                "initializing your Layer class `{}` . Because parameters of Layer class should be initialized firstly "
                "in dynamic mode while applying transformation.".format(
874 875 876
                    class_instance
                )
            )
877 878


879
class HookHelper:
880 881 882 883 884 885 886 887 888
    """
    Only For converting pre/post hooks operation in outermost layer while jit.save.
    Because hooks in sublayer have been processed automatically.
    """

    def __init__(self, func, class_instance, with_hook=False):
        self.func = func
        self.class_instance = class_instance
        self.with_hook = with_hook
889 890 891
        self.need_apply_hook = (
            with_hook
            and isinstance(self.class_instance, layers.Layer)
892
            and func.__name__ == "forward"
893
        )
894 895 896 897 898

    def apply_pre_hooks(self, inputs):
        """
        Apply _forward_pre_hooks from outermost layer
        """
899 900
        if not self.need_apply_hook:
            return inputs
901 902 903 904 905 906

        inputs = inputs[1:]
        for forward_pre_hook in self.class_instance._forward_pre_hooks.values():
            hook_result = forward_pre_hook(self.class_instance, inputs)
            if hook_result is not None:
                if not isinstance(hook_result, tuple):
907
                    hook_result = (hook_result,)
908 909 910 911 912 913 914 915
                inputs = hook_result

        return [self.class_instance] + list(inputs)

    def apply_post_hooks(self, inputs, outputs):
        """
        Apply _forward_post_hooks from outermost layer
        """
916 917
        if not self.need_apply_hook:
            return outputs
918 919

        inputs = inputs[1:]
920 921 922 923 924 925
        for (
            forward_post_hook
        ) in self.class_instance._forward_post_hooks.values():
            hook_result = forward_post_hook(
                self.class_instance, inputs, outputs
            )
926 927 928 929 930 931 932
            if hook_result is not None:
                outputs = hook_result

        inputs.insert(0, self.class_instance)
        return outputs


933
class ConcreteProgram:
934 935

    __slots__ = [
936 937 938 939 940 941 942
        'inputs',
        'outputs',
        'main_program',
        "startup_program",
        "parameters",
        "function",
        'kwargs',
943 944
    ]

945 946 947 948 949 950 951 952
    def __init__(
        self,
        inputs,
        outputs,
        parameters,
        function,
        main_program,
        startup_program=None,
953
        **kwargs,
954
    ):
955 956 957
        self.inputs = inputs
        self.outputs = outputs
        self.main_program = main_program
958
        self.startup_program = startup_program
959
        self.parameters = parameters
960
        self.function = function
961
        self.kwargs = kwargs
962 963 964

    @staticmethod
    @switch_to_static_graph
965 966 967
    def from_func_spec(
        func_spec, input_spec, input_kwargs_spec, class_instance, **kwargs
    ):
968
        """
969 970
        Builds the main_program with specialized inputs and returns outputs
        of program as fetch_list.
971 972 973

        Args:
            func_spec(FunctionSpec): A FunctionSpec instance for decorated function.
974
            input_spec(list[InputSpec]):
975
        """
976 977 978
        # verify the instance is initialized in imperative mode.
        _verify_init_in_dynamic_mode(class_instance)

979
        # Transforms dygraph function into static function and caches it.
980
        dygraph_function = func_spec.dygraph_function
981
        static_func = convert_to_static(dygraph_function)
982
        # apply pre\post hook for outermost layer
983 984 985
        hook_helper = HookHelper(
            dygraph_function, class_instance, kwargs.get("with_hook", False)
        )
986

987 988
        main_program, startup_program = framework.Program(), framework.Program()
        # Note: The random seed should be synchronized into cached program
989
        # if set in `fluid.dygraph_guard` because some ops rely on it, such as
990
        # `fluid.layers.dropout`.
991
        main_program.random_seed = framework.default_main_program().random_seed
992 993 994
        startup_program.random_seed = (
            framework.default_startup_program().random_seed
        )
995

996
        with framework.program_guard(main_program, startup_program):
997
            with _switch_declarative_mode_guard_(is_declarative=True):
998
                # 1. Adds `paddle.static.data` layers for input if needed
999
                static_inputs = func_spec.to_static_inputs_with_spec(
1000 1001
                    input_spec, main_program
                )
1002
                _kwargs = func_spec.to_static_inputs_with_spec(
1003 1004
                    input_kwargs_spec, main_program
                )
1005
                if class_instance:
1006 1007 1008
                    static_inputs = tuple(
                        [class_instance] + list(static_inputs)
                    )
1009

1010
                # 2. Builds program only once and returns the output Variables.
1011 1012 1013
                with param_guard(
                    get_parameters(class_instance, False)
                ), param_guard(get_buffers(class_instance, False)):
1014
                    try:
1015 1016
                        # only for jit.save, do nothing while train and eval process
                        inputs = hook_helper.apply_pre_hooks(static_inputs)
1017 1018
                        if _kwargs:
                            outputs = static_func(*inputs, **_kwargs)
1019 1020
                        else:
                            outputs = static_func(*inputs)
1021
                        outputs = hook_helper.apply_post_hooks(inputs, outputs)
1022 1023
                    except BaseException as e:
                        # NOTE: If e is raised in compile time, e should be attached to ERROR_DATA here.
1024
                        error.attach_error_data(e)
1025 1026 1027
                        error_data = getattr(e, error.ERROR_DATA, None)
                        if error_data:
                            error_data.raise_new_exception()
1028 1029
                        raise

1030 1031 1032 1033 1034 1035 1036
                # 3. Gets all ParamBases and buffered VarBases in the function
                all_parameters_and_buffers = (
                    ProgramTranslator.get_instance()._params_recorder.pop(
                        main_program
                    )
                )

1037
                if outputs is not None:
1038 1039 1040 1041
                    need_wrap_into_list = (
                        not isinstance(outputs, (tuple, list))
                        or len(outputs) == 1
                    )
1042 1043
                    if need_wrap_into_list:
                        outputs = [outputs]
1044

1045 1046
        main_program = update_op_callstack_with_origin_info(main_program)

1047 1048 1049 1050 1051 1052 1053
        return ConcreteProgram(
            inputs=static_inputs,
            outputs=outputs,
            parameters=all_parameters_and_buffers,
            function=dygraph_function,
            main_program=main_program,
            startup_program=startup_program,
1054
            **kwargs,
1055
        )
1056 1057


1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
class ParametersRecorder:
    def __init__(self):
        self.params_dict = {}

    @synchronized
    def add(self, program, param):
        """use the default_program as key, append param the parameter list."""
        key = self._program_hash(program)
        if key not in self.params_dict:
            self.params_dict[key] = set()
        params = self.params_dict[key]
        params.add(param)

    def pop(self, program):
        params = self.params_dict.get(self._program_hash(program))
        if params is None:
            return []
        del self.params_dict[self._program_hash(program)]
        return list(params)

    def _program_hash(self, program):
        """
        because program is not deleted while calling from_func_spec.
        so it's ok to use id(program)
        """
        return id(program)


1086
class FallbackProgramLayer:
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    __slots__ = [
        '_instance',
        '_dy_func',
        'training',
        '_cuda_graph_capture_mode',
        '_cuda_graph_pool_id',
    ]

    def __init__(self, instance, dy_func):
        self._instance = instance
        self._dy_func = dy_func

    def __call__(self, inputs):
        return self._dy_func(*inputs)

    def __getattr__(self, key):
        if key not in self.__slots__:
            raise RuntimeError(
                "There raises a exception after applying `@paddle.jit.to_static()` and already switch into fallback mode. \n"
                "You can't get attribute for a fallback program layer. Please check `to_static.error` file for detail."
            )
        elif key in ['training']:
            if self._instance is not None:
                return getattr(self._instance, key)
            return

        return super().__getattr__(key)

    def __setattr__(self, key, value):
        if key not in self.__slots__:
            raise RuntimeError(
                "There raises a exception after applying `@paddle.jit.to_static()` and already switch into fallback mode. \n"
                "You can't get attribute for a fallback program layer. Please check `to_static.error` file for detail."
            )
        elif key in ['training']:
            if self._instance is not None:
                return setattr(self._instance, key, value)
            return

        return super().__setattr__(key, value)


1129
class ProgramCache:
1130 1131 1132
    """
    Wrapper class for the program functions defined by dygraph function.
    """
1133

1134 1135
    dy2static_error_file = "to_static.error"

1136
    def __init__(self):
1137
        # {hash_id : (concrete_program, partial_layer)}
1138
        self._caches = collections.OrderedDict()
1139
        # trace mostly recent used program
1140
        self._recent_key = None
1141
        self._recent_cache_key = None
1142

1143
    def _build_once(self, cache_key):
1144 1145
        # TODO(Aurelius84): Need a gloabl FLAGS to enable/disable to_prim
        enable_prim = cache_key.kwargs['build_strategy'].build_cinn_pass
1146 1147
        # TODO(CZ): later when use cinn, set_prim_all_enabled and check_and_set_prim_all_enabled will be set at else branch.

1148 1149
        # NOTE(xiongkun): Need a global FLAGS to enable/disable fallback
        enable_fallback = enable_prim
1150
        core.check_and_set_prim_all_enabled()
1151 1152 1153 1154 1155 1156
        try:
            concrete_program = ConcreteProgram.from_func_spec(
                func_spec=cache_key.function_spec,
                input_spec=cache_key.input_args_with_spec,
                input_kwargs_spec=cache_key.input_kwargs_with_spec,
                class_instance=cache_key.class_instance,
1157
                **cache_key.kwargs,
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
            )
        except Exception as e:
            if enable_fallback:
                warnings.warn(
                    "Exception is thrown while applying @paddle.jit.to_static. It will fallback into dygraph mode for training.\n"
                    "1. You can check `to_static.error` file in current workspace directory for detail.\n"
                    "2. In fallback mode, you can only do training, can't call paddle.jit.save(). Please modify model code according `to_static.error` firstly"
                )
                # TODO(xiongkun) change different file name to avoid overwrite.
                with open(self.dy2static_error_file, "w") as fp:
                    fp.write(str(e))
1169

1170 1171 1172 1173 1174 1175 1176
                fallback_layer = FallbackProgramLayer(
                    cache_key.class_instance,
                    cache_key.function_spec.dygraph_function,
                )
                return fallback_layer, fallback_layer
            else:
                raise
1177

1178 1179 1180 1181 1182 1183 1184 1185
        if prim_or_cinn_is_enabled(cache_key.kwargs['build_strategy']):
            for var in concrete_program.main_program.list_vars():
                if -1 in var.shape:
                    warnings.warn(
                        "Now prim and cinn do not support -1 shape, but the shape of var {} is {}".format(
                            var.name, var.shape
                        )
                    )
1186

X
xiongkun 已提交
1187
        partial_program = partial_program_from(concrete_program)
1188 1189 1190 1191
        if core._is_fwd_prim_enabled() and not _in_amp_guard():
            partial_program.set_hooker(
                PrimHooker(concrete_program.main_program)
            )
1192 1193
        return concrete_program, partial_program

1194
    def __getitem__(self, item):
1195
        if not isinstance(item, CacheKey):
1196 1197 1198 1199
            raise ValueError(
                'type(item) should be CacheKey, but received %s'
                % type_name(item)
            )
1200
        item_id = hash(item)
1201
        self._recent_cache_key = item
1202
        self._recent_key = item_id
1203 1204
        if item_id not in self._caches:
            self._caches[item_id] = self._build_once(item)
1205 1206 1207
            # Note: raise warnings if number of traced program is more than `max_tracing_count`
            current_tracing_count = len(self._caches)
            if current_tracing_count > MAX_TRACED_PROGRAM_COUNT:
1208
                logging_utils.warn(
1209
                    "Current traced program number: {} > `max_tracing_count`:{}. Too much cached programs will bring expensive overhead. "
1210 1211 1212 1213
                    "The reason may be: (1) passing tensors with different shapes, (2) passing python objects instead of tensors.".format(
                        current_tracing_count, MAX_TRACED_PROGRAM_COUNT
                    )
                )
1214

1215
        return self._caches[item_id]
1216

1217
    def get_program(self, item):
1218
        if not isinstance(item, CacheKey):
1219
            raise ValueError(
1220 1221 1222
                "Input item's type should be FunctionSpec, but received %s"
                % type_name(item)
            )
1223 1224
        item_id = hash(item)
        if item_id not in self._caches:
1225
            raise RuntimeError(
1226
                "Failed to find program for input item, please decorate input function by `@paddle.jit.to_static`."
1227
            )
1228
        return self._caches[item_id]
1229

1230
    def last(self):
1231 1232 1233
        assert (
            len(self._caches) >= 1
        ), "No valid cached program in ProgramCache."
1234 1235
        assert self._recent_key is not None
        return self._recent_key, self._caches[self._recent_key]
1236

1237 1238 1239 1240
    def __len__(self):
        return len(self._caches)

    def concrete_programs(self):
1241
        return [cp for key, (cp, _) in self._caches.items()]
1242

1243 1244 1245
    def clear(self):
        self._caches = collections.OrderedDict()

1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
class PrimHooker(PartialProgramLayerHook):
    def __init__(self, original_program):
        if len(original_program.blocks) > 1:
            raise ValueError(
                'The primitive mode only support one block currently.'
            )
        self.custom_vjps = set()
        if core._is_all_prim_enabled():
            self.custom_vjps = {
                op.type
                for op in original_program.block(0).ops
                if core.has_comp_grad_op_maker(op.type)
            }

    def before_append_backward(self, forward_program):
        if core._is_fwd_prim_enabled():
            _to_prim(forward_program.blocks, blacklist=self.custom_vjps)
        return forward_program

    def after_append_backward(self, whole_program, backward_start_idx):
        backward_length = len(whole_program.block(0).ops) - backward_start_idx
        if core._is_fwd_prim_enabled() and len(self.custom_vjps) != 0:
            _to_prim(whole_program.blocks, whitelist=self.custom_vjps)
        new_start_index = len(whole_program.block(0).ops) - backward_length
        return whole_program, new_start_index

    def after_infer(self, infer_program):
        if core._is_fwd_prim_enabled():
            _to_prim(infer_program.block(0))
        return infer_program


1279
class ProgramTranslator:
1280
    """
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    Class to translate dygraph function into static graph function. The object
    of this class is a singleton.

    Args:
        None.

    Returns:
        ProgramTranslator: the singleton object.

    Examples:
        .. code-block:: python

1293
            import paddle
1294

1295 1296 1297
            # Two methods get same object because ProgramTranslator is a singleton
            paddle.jit.ProgramTranslator()
            paddle.jit.ProgramTranslator.get_instance()
1298

1299 1300
    """

1301
    _singleton_lock = threading.Lock()
1302 1303 1304 1305 1306 1307
    _instance = None

    @synchronized
    def __new__(cls, *args, **kwargs):
        if cls._instance is None:
            cls._instance = object.__new__(cls, *args, **kwargs)
1308
            cls._instance._initialized = False
1309 1310 1311 1312 1313
        return cls._instance

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
1314 1315
            with cls._singleton_lock:
                cls._instance = cls()
1316 1317 1318 1319 1320
        return cls._instance

    @classmethod
    def reset(cls):
        if cls._instance is not None:
1321
            cls._instance._initialized = False
1322 1323
            cls._instance.__init__()

1324
    def __init__(self):
1325
        # To make sure that calls __init__ only once.
1326
        if self._initialized:
1327
            return
1328 1329
        self._initialized = True
        self._program_cache = ProgramCache()
1330
        self._params_recorder = ParametersRecorder()
1331
        self.enable_to_static = True
1332

1333
    def enable(self, enable_to_static):
1334
        """
1335
        Enable or disable the converting from imperative to static graph by
1336 1337 1338
        ProgramTranslator globally.

        Args:
1339
            enable_to_static (bool): True or False to enable or disable converting to static.
1340 1341 1342 1343 1344 1345 1346

        Returns:
            None.

        Examples:
            .. code-block:: python

1347
                import paddle
1348 1349


1350 1351 1352 1353 1354 1355 1356
                @paddle.jit.to_static
                def func(x):
                    if paddle.mean(x) > 0:
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v
1357

1358

R
Ryan 已提交
1359
                paddle.jit.enable_to_static(False)
1360 1361 1362

                x = paddle.ones([1, 2])
                # ProgramTranslator is disabled so the func is run in dygraph
1363
                print(func(x))  # [[0. 0.]]
L
liym27 已提交
1364

1365
        """
1366 1367 1368 1369 1370 1371
        check_type(
            enable_to_static,
            "enable_to_static",
            bool,
            "ProgramTranslator.enable",
        )
1372
        self.enable_to_static = enable_to_static
1373

1374 1375
    def get_output(self, dygraph_func, *args, **kwargs):
        """
1376
        Returns the output dygraph Tensor for dygraph function. The dygraph
1377
        function will be translated into static graph function so the under
1378
        beneath numerical result will be calculated by static graph mode.
1379 1380 1381

        Args:
            dygraph_func (callable): the dygraph function.
1382 1383
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1384 1385

        Returns:
1386
            Tensor or tuple of Tensors: the dygraph Tensor containing digital result.
1387 1388 1389 1390

        Examples:
            .. code-block:: python

1391 1392
                import paddle

1393 1394

                def func(x):
1395
                    if paddle.mean(x) > 0:
1396 1397 1398 1399 1400 1401
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1402 1403 1404 1405
                prog_trans = paddle.jit.ProgramTranslator()

                x = paddle.ones([1, 2])
                x_v = prog_trans.get_output(func, x)
1406
                print(x_v)  # [[0. 0.]]
1407

1408
        """
1409 1410 1411
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_output"
1412

1413
        if not self.enable_to_static:
1414 1415
            # Here calls `warnings.warn` but not `logging_utils.warn` because by default warnings.warn(message)
            # will show up **only once**.
1416
            logging_utils.warn(
1417 1418 1419 1420
                "The ProgramTranslator.get_output doesn't work when setting ProgramTranslator.enable to False. "
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1421
            return dygraph_func(*args, **kwargs)
1422
        try:
1423
            function_spec = FunctionSpec(dygraph_func)
1424
            cache_key = CacheKey.from_func_and_args(
1425 1426 1427 1428 1429
                function_spec,
                args,
                kwargs,
                getattr(dygraph_func, '__self__', None),
            )
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
            _, partial_program_layer = self._program_cache[cache_key]

            if args and isinstance(args[0], layers.Layer):
                # Synchronize self.training attribute.
                partial_program_layer.training = args[0].training
                args = args[1:]
            try:
                return partial_program_layer(args)
            except BaseException as e:
                # NOTE:
                # 1. If e is raised in compile time, e should have been attached to ERROR_DATA before;
                # 2. If e raised in runtime, e should be attached to ERROR_DATA here.
                if not hasattr(e, error.ERROR_DATA):
                    # runtime error
                    error.attach_error_data(e, in_runtime=True)
                raise
1446
        except BaseException as e:
1447 1448 1449 1450 1451 1452
            error_data = getattr(e, error.ERROR_DATA, None)
            if error_data:
                error_data.raise_new_exception()
            else:
                logging_utils.warn(
                    "Please file an issue at 'https://github.com/PaddlePaddle/Paddle/issues'"
1453 1454
                    " if you can't handle this {} yourself.".format(type(e))
                )
1455
                raise e
1456 1457 1458

    def get_func(self, dygraph_func):
        """
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
        Returns a callable function which converts imperative dygraph APIs of
        the input dygraph_func into declarative net-building APIs, which means
        it doesn't return immediate digital result as get_output does.
        Users should handle Program and Executor by themselves.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
            callable: converting imperative dygraph APIs into declarative
            net-building APIs.
1470 1471 1472 1473

        Examples:
            .. code-block:: python

1474 1475
                import paddle

1476 1477

                def func(x):
1478
                    if paddle.mean(x) > 0:
1479 1480 1481 1482 1483 1484
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1485
                prog_trans = paddle.jit.ProgramTranslator()
1486 1487 1488
                static_func = prog_trans.get_func(func)
                print(callable(static_func)) # True

1489
        """
1490 1491 1492
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_func"
1493

1494
        if not self.enable_to_static:
1495
            logging_utils.warn(
1496 1497 1498
                "The ProgramTranslator.get_func doesn't work when setting ProgramTranslator.enable to False. We will "
                "just return dygraph output. Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1499
            return dygraph_func
1500

1501
        static_func = convert_to_static(dygraph_func)
1502 1503
        return static_func

1504 1505
    def get_program(self, dygraph_func, *args, **kwargs):
        """
1506
        Returns the translated static program and input/output Tensors from
1507 1508 1509 1510
        dygraph function. The users can use the program to run by executor.

        Args:
            dygraph_func (callable): the dygraph function.
1511 1512
            *args (tuple): the input argument of dygraph_func.
            **kwargs (dict): the input argument of dygraph_func.
1513 1514 1515

        Returns:
            tuple of (main_program, startup_program, inputs, outputs) whose
1516
            types are (Program, Program, list of Tensors, list of Tensors).
1517 1518
            main_program: the converted main program.
            startup_program: the converted startup program.
1519 1520
            inputs: list of input Tensors which need to be fed.
            outputs: list of output Tensors which users can fetch.
1521 1522 1523 1524

        Examples:
            .. code-block:: python

1525 1526
                import paddle

1527 1528

                def func(x):
1529
                    if paddle.mean(x) > 0:
1530 1531 1532 1533 1534 1535
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v


1536 1537
                prog_trans = paddle.jit.ProgramTranslator()
                x = paddle.ones([1, 2])
1538 1539
                main_prog, start_prog, inputs, outputs = prog_trans.get_program(func, x)
                print([i.name for i in inputs])
1540
                # [u'generated_tensor_0'] the feed input Tensor name representing x
1541
                print([o.name for o in outputs])
1542
                # [u'_generated_var_4'] the fetch output Tensor name representing x_v
1543

1544
        """
1545 1546 1547
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_program"
1548

1549
        if not self.enable_to_static:
1550
            logging_utils.warn(
1551 1552 1553 1554
                "The ProgramTranslator.get_program doesn't work when setting ProgramTranslator.enable to False."
                "We will just return dygraph output. "
                "Please call ProgramTranslator.enable(True) if you would like to get static output."
            )
1555
            return dygraph_func(*args, **kwargs)
1556

1557
        function_spec = FunctionSpec(dygraph_func)
1558
        cache_key = CacheKey.from_func_and_args(
1559 1560
            function_spec, args, kwargs, getattr(dygraph_func, '__self__', None)
        )
1561 1562
        concrete_program, partial_program_layer = self._program_cache[cache_key]

1563 1564
        # Note: concrete_program hold all input/output infos include non-Variable
        input_vars = [
1565 1566
            var
            for var in concrete_program.inputs
1567 1568 1569
            if isinstance(var, framework.Variable)
        ]
        output_vars = [
1570 1571
            var
            for var in concrete_program.outputs
1572 1573 1574
            if isinstance(var, framework.Variable)
        ]

1575 1576 1577 1578 1579 1580
        return (
            concrete_program.main_program,
            concrete_program.startup_program,
            input_vars,
            output_vars,
        )
1581

1582 1583
    def get_code(self, dygraph_func):
        """
1584 1585 1586 1587 1588 1589
        Returns the translated static function string code from dygraph function.

        Args:
            dygraph_func (callable): the dygraph function.

        Returns:
1590 1591 1592 1593 1594
            str: the string code of translated static function.

        Examples:
            .. code-block:: python

1595 1596 1597 1598 1599 1600 1601 1602 1603
                import paddle


                def func(x):
                    if paddle.mean(x) > 0:
                        x_v = x - 1
                    else:
                        x_v = x + 1
                    return x_v
1604 1605


1606
                prog_trans = paddle.jit.ProgramTranslator()
1607

1608 1609
                code = prog_trans.get_code(func)
                print(type(code)) # <class 'str'>
1610

1611
        """
1612 1613 1614
        assert callable(
            dygraph_func
        ), "Input dygraph_func is not a callable in ProgramTranslator.get_code"
1615
        # Gets AST from dygraph function
1616 1617 1618

        unwrap_func = unwrap(dygraph_func)
        raw_code = inspect.getsource(unwrap_func)
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
        code = textwrap.dedent(raw_code)
        root = gast.parse(code)

        # Transform AST
        dygraph_to_static = DygraphToStaticAst()
        root_wrapper = dygraph_to_static.get_static_ast(root)

        # Get source_code
        source_code = ast_to_source_code(root_wrapper.node)
        return source_code

1630
    def get_program_cache(self):
1631
        """
1632 1633 1634 1635 1636 1637 1638 1639 1640
        Returns the ProgramCache instance. This method is used by PaddlePaddle
        developers to manage program cache in ProgramTranslator. Normal users
        don't have to call this method.

        Returns:
            ProgramCache: ProgramCache instance of ProgramTranslator.

        Examples:
            .. code-block:: python
1641

1642
                import paddle
1643

1644
                prog_trans = paddle.jit.ProgramTranslator()
1645 1646
                prog_cache = prog_trans.get_program_cache()

1647
        """
1648
        return self._program_cache
R
Ryan 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692


def enable_to_static(enable_to_static_bool):

    """
    Enable or disable the converting from imperative to static graph by
    ProgramTranslator globally.

    Args:
        enable_to_static_bool (bool): True or False to enable or disable converting to static.

    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle


            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) > 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v


            paddle.jit.enable_to_static(False)

            x = paddle.ones([1, 2])
            # ProgramTranslator is disabled so the func is run in dygraph
            print(func(x))  # [[0. 0.]]

    """
    check_type(
        enable_to_static_bool,
        "enable_to_static_bool",
        bool,
        "paddle.jit.enable_to_static",
    )
    _program_trans = ProgramTranslator()
    _program_trans.enable(enable_to_static_bool)
1693 1694 1695


@switch_to_static_graph
1696 1697
def _to_prim(blocks, blacklist=frozenset(), whitelist=frozenset()):
    """Swith to static graph and call to_prim."""
1698 1699 1700
    # TODO(Aurelius84): Fix this cycle import problem
    from paddle.incubate.autograd import primapi

1701
    primapi.to_prim(blocks, blacklist=blacklist, whitelist=whitelist)