phi_utils.cc 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/framework/phi_utils.h"

17 18
#include <sstream>

19
#include "paddle/fluid/framework/convert_utils.h"
20
#include "paddle/fluid/framework/lod_tensor.h"
Z
Zeng Jinle 已提交
21
#include "paddle/fluid/framework/op_info.h"
22
#include "paddle/fluid/framework/selected_rows_utils.h"
23
#include "paddle/fluid/string/string_helper.h"
24 25 26
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
27
#include "paddle/phi/core/tensor_utils.h"
28
#include "paddle/phi/core/type_defs.h"
29 30 31 32

namespace paddle {
namespace framework {

Z
Zeng Jinle 已提交
33 34 35 36 37
class KernelArgsNameMakerByOpProto : public KernelArgsNameMaker {
 public:
  explicit KernelArgsNameMakerByOpProto(
      const framework::proto::OpProto* op_proto)
      : op_proto_(op_proto) {
38 39 40
    PADDLE_ENFORCE_NOT_NULL(
        op_proto_,
        platform::errors::InvalidArgument("Op proto cannot be nullptr."));
Z
Zeng Jinle 已提交
41 42 43 44
  }

  ~KernelArgsNameMakerByOpProto() {}

C
Chen Weihang 已提交
45 46 47
  const paddle::small_vector<const char*>& GetInputArgsNames() override;
  const paddle::small_vector<const char*>& GetOutputArgsNames() override;
  const paddle::small_vector<const char*>& GetAttrsArgsNames() override;
Z
Zeng Jinle 已提交
48

49
  phi::KernelSignature GetKernelSignature();
Z
Zeng Jinle 已提交
50 51 52 53 54 55 56

 private:
  DISABLE_COPY_AND_ASSIGN(KernelArgsNameMakerByOpProto);

 private:
  const framework::proto::OpProto* op_proto_;

C
Chen Weihang 已提交
57 58 59
  paddle::small_vector<const char*> input_names_;
  paddle::small_vector<const char*> output_names_;
  paddle::small_vector<const char*> attr_names_;
Z
Zeng Jinle 已提交
60 61
};

62
OpKernelType TransPhiKernelKeyToOpKernelType(const phi::KernelKey& kernel_key) {
63
  proto::VarType::Type data_type =
64
      paddle::framework::TransToProtoVarType(kernel_key.dtype());
65
  // no need to set current device id here
66
  platform::Place place = phi::TransToPhiPlace(kernel_key.backend(), false);
67
  DataLayout data_layout = kernel_key.layout();
68
  LibraryType library_type = LibraryType::kPlain;
69
  if (kernel_key.backend() == phi::Backend::ONEDNN) {
70
    library_type = LibraryType::kMKLDNN;
71
  } else if (kernel_key.backend() == phi::Backend::GPUDNN) {
72
    library_type = LibraryType::kCUDNN;
73 74
  } else if (kernel_key.backend() == phi::Backend::KPS) {
    library_type = LibraryType::kKP;
75 76 77 78 79 80 81
  } else {
    // do nothing
  }
  // TODO(chenweihang): the customized_type_value is lost
  return OpKernelType(data_type, place, data_layout, library_type);
}

82
phi::KernelKey TransOpKernelTypeToPhiKernelKey(
83
    const OpKernelType& kernel_type) {
84
  phi::Backend backend = phi::TransToPhiBackend(kernel_type.place_);
85 86 87 88 89
  switch (kernel_type.library_type_) {
    case LibraryType::kCUDNN:
      backend = phi::Backend::GPUDNN;
      break;
    case LibraryType::kMKLDNN:
90
      backend = phi::Backend::ONEDNN;
91 92 93 94 95 96
      break;
    case LibraryType::kKP:
      backend = phi::Backend::KPS;
      break;
    default:
      break;
97
  }
98 99
  return phi::KernelKey(backend,
                        kernel_type.data_layout_,
100
                        framework::TransToPhiDataType(kernel_type.data_type_));
101 102
}

H
HongyuJia 已提交
103
phi::KernelKey FallBackToCpu(const phi::KernelKey& kernel_key,
104
                             const framework::OperatorBase& op) {
105
#ifdef PADDLE_WITH_XPU
H
HongyuJia 已提交
106
  if (kernel_key.backend() == phi::Backend::XPU ||
107
      paddle::platform::is_in_xpu_black_list(op.Type())) {
108
    VLOG(3) << "phi missing XPU kernel: " << op.Type()
H
HongyuJia 已提交
109 110
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
111 112
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
113 114 115
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
H
HongyuJia 已提交
116
  if (kernel_key.backend() == phi::Backend::NPU) {
117
    VLOG(3) << "phi missing NPU kernel: " << op.Type()
H
HongyuJia 已提交
118 119
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
120 121
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
122 123 124
  }
#endif
#ifdef PADDLE_WITH_MLU
H
HongyuJia 已提交
125
  if (kernel_key.backend() == phi::Backend::MLU) {
126
    VLOG(3) << "phi missing MLU kernel: " << op.Type()
H
HongyuJia 已提交
127 128
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
129 130
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
131 132 133
  }
#endif
#ifdef PADDLE_WITH_IPU
H
HongyuJia 已提交
134
  if (kernel_key.backend() == phi::Backend::IPU) {
135
    VLOG(3) << "phi missing IPU kernel: " << op.Type()
H
HongyuJia 已提交
136 137
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
138 139
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
140 141 142
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
H
HongyuJia 已提交
143
  auto place = phi::TransToPhiPlace(kernel_key.backend());
144 145 146 147 148
  bool is_custom_place = platform::is_custom_place(place);
  if (is_custom_place ||
      phi::backends::custom_device::is_in_custom_black_list(op.Type())) {
    std::string info = is_custom_place ? "phi missing " : "phi in black list ";
    VLOG(3) << info << place.GetDeviceType() << " kernel: " << op.Type()
H
HongyuJia 已提交
149 150
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
151 152
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
153 154
  }
#endif
155
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
H
HongyuJia 已提交
156 157
  if (kernel_key.backend() == phi::Backend::GPU ||
      kernel_key.backend() == phi::Backend::GPUDNN) {
158 159 160 161 162
    PADDLE_THROW(
        phi::errors::NotFound("The kernel (%s) with key %s is not found and "
                              "GPU kernel cannot fallback to CPU one.",
                              op.Type(),
                              kernel_key));
163 164 165
  }
#endif

166
  return phi::KernelKey();
167 168
}

C
Chen Weihang 已提交
169
const paddle::small_vector<const char*>&
170 171 172 173 174 175 176 177
KernelArgsNameMakerByOpProto::GetInputArgsNames() {
  for (int i = 0; i < op_proto_->inputs_size(); ++i) {
    auto& in = op_proto_->inputs()[i];
    auto& in_name = in.name();
    if ((in.has_extra() && in.extra()) || (in.has_quant() && in.quant())) {
      continue;
    }
    // If contains dispensable input, we should override the
178
    // OpArgumentMapping method self in phi/ops/compat dir
179 180 181
    if (in.has_dispensable() && in.dispensable()) {
      continue;
    }
182 183 184 185 186
    input_names_.emplace_back(in_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel inputs: ";
187 188
    std::copy(input_names_.begin(),
              input_names_.end(),
189 190
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
191 192 193 194
  }
  return input_names_;
}

C
Chen Weihang 已提交
195
const paddle::small_vector<const char*>&
196 197 198 199
KernelArgsNameMakerByOpProto::GetOutputArgsNames() {
  for (int i = 0; i < op_proto_->outputs_size(); ++i) {
    auto& out = op_proto_->outputs()[i];
    auto& out_name = out.name();
200 201 202
    if ((out.has_extra() && out.extra()) || (out.has_quant() && out.quant())) {
      continue;
    }
203 204 205 206 207
    output_names_.emplace_back(out_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel outputs: ";
208 209
    std::copy(output_names_.begin(),
              output_names_.end(),
210 211
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
212 213 214 215
  }
  return output_names_;
}

C
Chen Weihang 已提交
216
const paddle::small_vector<const char*>&
217 218 219 220
KernelArgsNameMakerByOpProto::GetAttrsArgsNames() {
  for (int i = 0; i < op_proto_->attrs_size(); ++i) {
    auto& attr = op_proto_->attrs()[i];
    auto& attr_name = attr.name();
221 222 223 224
    if (attr_name == "use_mkldnn" || attr_name == "use_cudnn" ||
        attr_name == "op_role" || attr_name == "op_role_var" ||
        attr_name == "op_namescope" || attr_name == "op_callstack" ||
        attr_name == "op_device") {
225 226 227 228 229 230
      continue;
    }
    if ((attr.has_extra() && attr.extra()) ||
        (attr.has_quant() && attr.quant())) {
      continue;
    }
231 232 233 234 235
    attr_names_.emplace_back(attr_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel attributes: ";
236 237
    std::copy(attr_names_.begin(),
              attr_names_.end(),
238 239
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
240 241 242 243
  }
  return attr_names_;
}

244 245
phi::KernelSignature KernelArgsNameMakerByOpProto::GetKernelSignature() {
  return phi::KernelSignature(
246 247 248 249
      phi::TransToPhiKernelName(op_proto_->type()).c_str(),
      GetInputArgsNames(),
      GetAttrsArgsNames(),
      GetOutputArgsNames());
250 251
}

252 253 254 255 256 257 258
std::once_flag kernel_sig_map_init_flag;

void InitDefaultKernelSignatureMap() {
  std::call_once(kernel_sig_map_init_flag, [] {
    for (const auto& pair : paddle::framework::OpInfoMap::Instance().map()) {
      const auto& op_type = pair.first;
      const auto* op_proto = pair.second.proto_;
259
      if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type) &&
260 261
          op_proto) {
        paddle::framework::KernelArgsNameMakerByOpProto maker(op_proto);
262
        VLOG(10) << "Register `" << op_type << "` kernel signature:";
263
        phi::DefaultKernelSignatureMap::Instance().Insert(
264 265 266 267 268 269
            op_type, std::move(maker.GetKernelSignature()));
      }
    }
  });
}

270
static void SetAllocationForUninitializedDenseTensor(
271
    phi::DenseTensor* dense_tensor, const platform::Place& place) {
272 273 274 275 276 277 278 279 280
  int dtype_size = dense_tensor->dtype() == DataType::UNDEFINED
                       ? 0
                       : experimental::SizeOf(dense_tensor->dtype());
  int64_t numels = product(dense_tensor->dims());
  numels = numels < 0 ? 0 : numels;
  auto tmp_allocation_ptr = memory::Alloc(place, numels * dtype_size);
  auto& deleter = tmp_allocation_ptr.get_deleter();
  auto* allocation_ptr = tmp_allocation_ptr.release();
  auto shared_allocation =
281
      std::shared_ptr<phi::Allocation>(allocation_ptr, deleter);
282 283 284 285

  dense_tensor->ResetHolder(shared_allocation);
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
phi::Scalar MakePhiScalarFromVar(const framework::Variable& variable) {
  auto expected_place = phi::TransToPhiPlace(phi::Backend::CPU);
  if (variable.IsType<phi::DenseTensor>()) {
    const auto& tensor = variable.Get<phi::DenseTensor>();
    PADDLE_ENFORCE_EQ(
        tensor.numel(),
        1UL,
        platform::errors::InvalidArgument("The DenseTensor used to construct "
                                          "the Scalar contains more than 1 "
                                          "value, it contains `%d` values.",
                                          tensor.numel()));
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      phi::DenseTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return {tmp_tensor};
    } else {
      return {tensor};
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

phi::IntArray MakePhiIntArrayFromVar(const framework::Variable& variable) {
  if (variable.IsType<phi::DenseTensor>()) {
    const auto& tensor = variable.Get<phi::DenseTensor>();
    return paddle::experimental::MakePhiIntArray(tensor);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to IntArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

// TODO(chentianyu03): Inplace with IntArray constructor
phi::IntArray MakePhiIntArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return phi::IntArray();
  }
  auto expected_place = phi::TransToPhiPlace(phi::Backend::CPU);

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  for (auto* var : variable_list) {
    paddle::experimental::DataType data_type;
    if (var->IsType<phi::DenseTensor>()) {
      const auto& tensor = var->Get<phi::DenseTensor>();
      data_type = tensor.dtype();
      if (data_type == paddle::experimental::DataType::INT64) {
        const auto& tensor = var->Get<phi::DenseTensor>();
        if (tensor.IsInitialized() &&
            !platform::is_same_place(tensor.place(), expected_place)) {
          phi::DenseTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
      } else if (data_type == paddle::experimental::DataType::INT32) {
        const auto& tensor = var->Get<phi::DenseTensor>();
        if (tensor.IsInitialized() &&
            !platform::is_same_place(tensor.place(), expected_place)) {
          phi::DenseTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(phi::errors::InvalidArgument(
            "Data type error. When cast a LoDTensor to VectorTensor, "
            "the data type of LoDTensor must be int32 or int64, "
            "but now data type is %s.",
            data_type));
      }
    } else {
      PADDLE_THROW(phi::errors::Unimplemented(
          "Unsupport casting input `%s` type to VectorTensor when call pt "
          "kernel.",
          framework::ToTypeName(var->Type())));
    }
  }

  phi::IntArray result{vector_data};
  result.SetFromTensor(true);

  return result;
}

381 382
}  // namespace framework
}  // namespace paddle