phi_utils.cc 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/framework/phi_utils.h"

17 18
#include <sstream>

19
#include "paddle/fluid/framework/convert_utils.h"
20
#include "paddle/fluid/framework/lod_tensor.h"
Z
Zeng Jinle 已提交
21
#include "paddle/fluid/framework/op_info.h"
22
#include "paddle/fluid/framework/selected_rows_utils.h"
23
#include "paddle/fluid/string/string_helper.h"
24 25 26
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
27
#include "paddle/phi/core/tensor_utils.h"
28
#include "paddle/phi/core/type_defs.h"
29 30 31 32

namespace paddle {
namespace framework {

Z
Zeng Jinle 已提交
33 34 35 36 37
class KernelArgsNameMakerByOpProto : public KernelArgsNameMaker {
 public:
  explicit KernelArgsNameMakerByOpProto(
      const framework::proto::OpProto* op_proto)
      : op_proto_(op_proto) {
38 39 40
    PADDLE_ENFORCE_NOT_NULL(
        op_proto_,
        platform::errors::InvalidArgument("Op proto cannot be nullptr."));
Z
Zeng Jinle 已提交
41 42 43 44
  }

  ~KernelArgsNameMakerByOpProto() {}

C
Chen Weihang 已提交
45 46 47
  const paddle::small_vector<const char*>& GetInputArgsNames() override;
  const paddle::small_vector<const char*>& GetOutputArgsNames() override;
  const paddle::small_vector<const char*>& GetAttrsArgsNames() override;
Z
Zeng Jinle 已提交
48

49
  phi::KernelSignature GetKernelSignature();
Z
Zeng Jinle 已提交
50 51 52 53 54 55 56

 private:
  DISABLE_COPY_AND_ASSIGN(KernelArgsNameMakerByOpProto);

 private:
  const framework::proto::OpProto* op_proto_;

C
Chen Weihang 已提交
57 58 59
  paddle::small_vector<const char*> input_names_;
  paddle::small_vector<const char*> output_names_;
  paddle::small_vector<const char*> attr_names_;
Z
Zeng Jinle 已提交
60 61
};

62
OpKernelType TransPhiKernelKeyToOpKernelType(const phi::KernelKey& kernel_key) {
63
  proto::VarType::Type data_type =
64
      paddle::framework::TransToProtoVarType(kernel_key.dtype());
65
  // no need to set current device id here
66
  platform::Place place = phi::TransToPhiPlace(kernel_key.backend(), false);
67
  DataLayout data_layout = kernel_key.layout();
68
  LibraryType library_type = LibraryType::kPlain;
69
  if (kernel_key.backend() == phi::Backend::ONEDNN) {
70
    library_type = LibraryType::kMKLDNN;
71
  } else if (kernel_key.backend() == phi::Backend::GPUDNN) {
72
    library_type = LibraryType::kCUDNN;
73 74
  } else if (kernel_key.backend() == phi::Backend::KPS) {
    library_type = LibraryType::kKP;
75 76 77 78 79 80 81
  } else {
    // do nothing
  }
  // TODO(chenweihang): the customized_type_value is lost
  return OpKernelType(data_type, place, data_layout, library_type);
}

82
phi::KernelKey TransOpKernelTypeToPhiKernelKey(
83
    const OpKernelType& kernel_type) {
84
  phi::Backend backend = phi::TransToPhiBackend(kernel_type.place_);
85 86 87 88 89
  switch (kernel_type.library_type_) {
    case LibraryType::kCUDNN:
      backend = phi::Backend::GPUDNN;
      break;
    case LibraryType::kMKLDNN:
90
      backend = phi::Backend::ONEDNN;
91 92 93 94 95 96
      break;
    case LibraryType::kKP:
      backend = phi::Backend::KPS;
      break;
    default:
      break;
97
  }
98 99
  return phi::KernelKey(backend,
                        kernel_type.data_layout_,
100
                        framework::TransToPhiDataType(kernel_type.data_type_));
101 102
}

H
HongyuJia 已提交
103
phi::KernelKey FallBackToCpu(const phi::KernelKey& kernel_key,
104
                             const framework::OperatorBase& op) {
105
#ifdef PADDLE_WITH_XPU
H
HongyuJia 已提交
106
  if (kernel_key.backend() == phi::Backend::XPU ||
107
      paddle::platform::is_in_xpu_black_list(op.Type())) {
108
    VLOG(3) << "phi missing XPU kernel: " << op.Type()
H
HongyuJia 已提交
109 110
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
111 112
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
113 114 115
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
H
HongyuJia 已提交
116
  if (kernel_key.backend() == phi::Backend::NPU) {
117
    VLOG(3) << "phi missing NPU kernel: " << op.Type()
H
HongyuJia 已提交
118 119
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
120 121
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
122 123 124
  }
#endif
#ifdef PADDLE_WITH_MLU
H
HongyuJia 已提交
125
  if (kernel_key.backend() == phi::Backend::MLU) {
126
    VLOG(3) << "phi missing MLU kernel: " << op.Type()
H
HongyuJia 已提交
127 128
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
129 130
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
131 132 133
  }
#endif
#ifdef PADDLE_WITH_IPU
H
HongyuJia 已提交
134
  if (kernel_key.backend() == phi::Backend::IPU) {
135
    VLOG(3) << "phi missing IPU kernel: " << op.Type()
H
HongyuJia 已提交
136 137
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
138 139
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
140 141 142
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
H
HongyuJia 已提交
143
  auto place = phi::TransToPhiPlace(kernel_key.backend());
144 145 146 147 148
  bool is_custom_place = platform::is_custom_place(place);
  if (is_custom_place ||
      phi::backends::custom_device::is_in_custom_black_list(op.Type())) {
    std::string info = is_custom_place ? "phi missing " : "phi in black list ";
    VLOG(3) << info << place.GetDeviceType() << " kernel: " << op.Type()
H
HongyuJia 已提交
149 150
            << ", expected_kernel_key:" << kernel_key
            << ", fallback to CPU one!";
151 152
    return phi::KernelKey(
        phi::Backend::CPU, kernel_key.layout(), kernel_key.dtype());
153 154
  }
#endif
155
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
H
HongyuJia 已提交
156 157
  if (kernel_key.backend() == phi::Backend::GPU ||
      kernel_key.backend() == phi::Backend::GPUDNN) {
158 159 160 161 162
    PADDLE_THROW(platform::errors::Unavailable(
        "For GPU kernel, they must not fallback into CPU kernel."));
  }
#endif

163
  return phi::KernelKey();
164 165
}

C
Chen Weihang 已提交
166
const paddle::small_vector<const char*>&
167 168 169 170 171 172 173 174
KernelArgsNameMakerByOpProto::GetInputArgsNames() {
  for (int i = 0; i < op_proto_->inputs_size(); ++i) {
    auto& in = op_proto_->inputs()[i];
    auto& in_name = in.name();
    if ((in.has_extra() && in.extra()) || (in.has_quant() && in.quant())) {
      continue;
    }
    // If contains dispensable input, we should override the
175
    // OpArgumentMapping method self in phi/ops/compat dir
176 177 178
    if (in.has_dispensable() && in.dispensable()) {
      continue;
    }
179 180 181 182 183
    input_names_.emplace_back(in_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel inputs: ";
184 185
    std::copy(input_names_.begin(),
              input_names_.end(),
186 187
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
188 189 190 191
  }
  return input_names_;
}

C
Chen Weihang 已提交
192
const paddle::small_vector<const char*>&
193 194 195 196
KernelArgsNameMakerByOpProto::GetOutputArgsNames() {
  for (int i = 0; i < op_proto_->outputs_size(); ++i) {
    auto& out = op_proto_->outputs()[i];
    auto& out_name = out.name();
197 198 199
    if ((out.has_extra() && out.extra()) || (out.has_quant() && out.quant())) {
      continue;
    }
200 201 202 203 204
    output_names_.emplace_back(out_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel outputs: ";
205 206
    std::copy(output_names_.begin(),
              output_names_.end(),
207 208
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
209 210 211 212
  }
  return output_names_;
}

C
Chen Weihang 已提交
213
const paddle::small_vector<const char*>&
214 215 216 217
KernelArgsNameMakerByOpProto::GetAttrsArgsNames() {
  for (int i = 0; i < op_proto_->attrs_size(); ++i) {
    auto& attr = op_proto_->attrs()[i];
    auto& attr_name = attr.name();
218 219 220 221
    if (attr_name == "use_mkldnn" || attr_name == "use_cudnn" ||
        attr_name == "op_role" || attr_name == "op_role_var" ||
        attr_name == "op_namescope" || attr_name == "op_callstack" ||
        attr_name == "op_device") {
222 223 224 225 226 227
      continue;
    }
    if ((attr.has_extra() && attr.extra()) ||
        (attr.has_quant() && attr.quant())) {
      continue;
    }
228 229 230 231 232
    attr_names_.emplace_back(attr_name.c_str());
  }
  if (VLOG_IS_ON(10)) {
    std::ostringstream sout;
    sout << "PhiKernel attributes: ";
233 234
    std::copy(attr_names_.begin(),
              attr_names_.end(),
235 236
              std::ostream_iterator<const char*>(sout, ", "));
    VLOG(10) << sout.str();
237 238 239 240
  }
  return attr_names_;
}

241 242
phi::KernelSignature KernelArgsNameMakerByOpProto::GetKernelSignature() {
  return phi::KernelSignature(
243 244 245 246
      phi::TransToPhiKernelName(op_proto_->type()).c_str(),
      GetInputArgsNames(),
      GetAttrsArgsNames(),
      GetOutputArgsNames());
247 248
}

249 250 251 252 253 254 255
std::once_flag kernel_sig_map_init_flag;

void InitDefaultKernelSignatureMap() {
  std::call_once(kernel_sig_map_init_flag, [] {
    for (const auto& pair : paddle::framework::OpInfoMap::Instance().map()) {
      const auto& op_type = pair.first;
      const auto* op_proto = pair.second.proto_;
256
      if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type) &&
257 258
          op_proto) {
        paddle::framework::KernelArgsNameMakerByOpProto maker(op_proto);
259
        VLOG(10) << "Register `" << op_type << "` kernel signature:";
260
        phi::DefaultKernelSignatureMap::Instance().Insert(
261 262 263 264 265 266
            op_type, std::move(maker.GetKernelSignature()));
      }
    }
  });
}

267
static void SetAllocationForUninitializedDenseTensor(
268
    phi::DenseTensor* dense_tensor, const platform::Place& place) {
269 270 271 272 273 274 275 276 277
  int dtype_size = dense_tensor->dtype() == DataType::UNDEFINED
                       ? 0
                       : experimental::SizeOf(dense_tensor->dtype());
  int64_t numels = product(dense_tensor->dims());
  numels = numels < 0 ? 0 : numels;
  auto tmp_allocation_ptr = memory::Alloc(place, numels * dtype_size);
  auto& deleter = tmp_allocation_ptr.get_deleter();
  auto* allocation_ptr = tmp_allocation_ptr.release();
  auto shared_allocation =
278
      std::shared_ptr<phi::Allocation>(allocation_ptr, deleter);
279 280 281 282

  dense_tensor->ResetHolder(shared_allocation);
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
phi::Scalar MakePhiScalarFromVar(const framework::Variable& variable) {
  auto expected_place = phi::TransToPhiPlace(phi::Backend::CPU);
  if (variable.IsType<phi::DenseTensor>()) {
    const auto& tensor = variable.Get<phi::DenseTensor>();
    PADDLE_ENFORCE_EQ(
        tensor.numel(),
        1UL,
        platform::errors::InvalidArgument("The DenseTensor used to construct "
                                          "the Scalar contains more than 1 "
                                          "value, it contains `%d` values.",
                                          tensor.numel()));
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      phi::DenseTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return {tmp_tensor};
    } else {
      return {tensor};
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

phi::IntArray MakePhiIntArrayFromVar(const framework::Variable& variable) {
  if (variable.IsType<phi::DenseTensor>()) {
    const auto& tensor = variable.Get<phi::DenseTensor>();
    return paddle::experimental::MakePhiIntArray(tensor);
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to IntArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

// TODO(chentianyu03): Inplace with IntArray constructor
phi::IntArray MakePhiIntArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return phi::IntArray();
  }
  auto expected_place = phi::TransToPhiPlace(phi::Backend::CPU);

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  for (auto* var : variable_list) {
    paddle::experimental::DataType data_type;
    if (var->IsType<phi::DenseTensor>()) {
      const auto& tensor = var->Get<phi::DenseTensor>();
      data_type = tensor.dtype();
      if (data_type == paddle::experimental::DataType::INT64) {
        const auto& tensor = var->Get<phi::DenseTensor>();
        if (tensor.IsInitialized() &&
            !platform::is_same_place(tensor.place(), expected_place)) {
          phi::DenseTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
      } else if (data_type == paddle::experimental::DataType::INT32) {
        const auto& tensor = var->Get<phi::DenseTensor>();
        if (tensor.IsInitialized() &&
            !platform::is_same_place(tensor.place(), expected_place)) {
          phi::DenseTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(phi::errors::InvalidArgument(
            "Data type error. When cast a LoDTensor to VectorTensor, "
            "the data type of LoDTensor must be int32 or int64, "
            "but now data type is %s.",
            data_type));
      }
    } else {
      PADDLE_THROW(phi::errors::Unimplemented(
          "Unsupport casting input `%s` type to VectorTensor when call pt "
          "kernel.",
          framework::ToTypeName(var->Type())));
    }
  }

  phi::IntArray result{vector_data};
  result.SetFromTensor(true);

  return result;
}

378 379
}  // namespace framework
}  // namespace paddle