Evaluator.h 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Y
Yu Yang 已提交
17
#include <fstream>
Z
zhangjinchao01 已提交
18 19
#include "ModelConfig.pb.h"
#include "paddle/parameter/Argument.h"
Y
Yu Yang 已提交
20 21
#include "paddle/pserver/ParameterClient2.h"
#include "paddle/utils/ClassRegistrar.h"
Y
Stash  
Yu Yang 已提交
22
#include "paddle/utils/Error.h"
Z
zhangjinchao01 已提交
23 24 25 26

namespace paddle {

class NeuralNetwork;
Q
qijun 已提交
27 28 29 30
/**
 * @def REGISTER_EVALUATOR
 * @brief Macro for registering evaluator class
 */
Z
zhangjinchao01 已提交
31 32 33 34 35

#define REGISTER_EVALUATOR(__type_name, __class_name)                \
  static InitFunction __reg_type_##__type_name([]() {                \
    Evaluator::registrar_.registerClass<__class_name>(#__type_name); \
  })
Q
qijun 已提交
36 37 38 39 40 41
/**
 * @brief Base class for Evaluator
 * Evaluating the performance of a model is very important.
 * It indicates how successful the scores(predictions) of a datasets
 * has been by a trained model.
 */
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48 49 50 51 52
class Evaluator {
public:
  static Evaluator* create(const EvaluatorConfig& config);

  Evaluator() : numSamples_(0), totalScore_(0) {}

  virtual ~Evaluator() {}

  virtual void init(const EvaluatorConfig& config) { config_ = config; }

  /**
Q
qijun 已提交
53
   * @brief start to evaluate some data
Z
zhangjinchao01 已提交
54 55 56 57 58 59 60
   */
  virtual void start() {
    numSamples_ = 0;
    totalScore_ = 0;
  }

  /**
Q
qijun 已提交
61
   * @brief Process a batch of data.
Z
zhangjinchao01 已提交
62 63 64 65
   */
  virtual void eval(const NeuralNetwork& nn);

  /**
Q
qijun 已提交
66 67 68 69
   * @brief Process a batch of data.
   * @return the score for the batch if it make sense to sum the score across
   * batches.
   * @note Otherwise evaluator should return 0 and override finish() and
Z
zhangjinchao01 已提交
70 71 72 73 74
   * printStats() to do the right calculation.
   */
  virtual real evalImp(std::vector<Argument>& arguments) = 0;

  /**
Q
qijun 已提交
75
   * @brief Update the number of processed samples
Z
zhangjinchao01 已提交
76 77 78 79 80
   */
  virtual void updateSamplesNum(const std::vector<Argument>& arguments) {
    numSamples_ += arguments[0].getBatchSize();
  }

81
  /// finish() should be called before distributeEval
Z
zhangjinchao01 已提交
82 83 84 85 86 87 88 89 90 91 92 93
  virtual void distributeEval(ParameterClient2* client) {
    LOG(FATAL) << "Not implemeted";
  }

  void mergeResultsOfAllClients(ParameterClient2* client) {
    double data[2] = {totalScore_, numSamples_};
    client->reduce(data, data, 2, FLAGS_trainer_id, 0);
    totalScore_ = data[0];
    numSamples_ = data[1];
  }

  /**
Q
qijun 已提交
94
   * @brief finish the evaluation.
Z
zhangjinchao01 已提交
95 96 97
   */
  virtual void finish() {}

Q
qijun 已提交
98 99 100 101
  /**
   * @brief print the statistics of evaluate result
   * @note finish() should be called before printStats
   */
Y
Yu Yang 已提交
102
  virtual void printStats(std::ostream& os) const {
Z
zhangjinchao01 已提交
103 104 105 106 107
    os << config_.name() << "="
       << (numSamples_ ? totalScore_ / numSamples_ : 0);
  }

  friend std::ostream& operator<<(std::ostream& os,
Y
Yu Yang 已提交
108
                                  const Evaluator& evaluator) {
Z
zhangjinchao01 已提交
109 110 111 112
    evaluator.printStats(os);
    return os;
  }

113
  friend std::ostream&& operator<<(std::ostream&& os,  // NOLINT
Y
Yu Yang 已提交
114
                                   const Evaluator& evaluator) {
Z
zhangjinchao01 已提交
115 116 117 118 119 120
    evaluator.printStats(os);
    return std::move(os);
  }

  static ClassRegistrar<Evaluator> registrar_;

Y
Stash  
Yu Yang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133
  virtual void getNames(std::vector<std::string>* names) {
    names->push_back(config_.name());
  }

  virtual real getValue(const std::string& name,
                        paddle::Error* err = nullptr) const {
    if (name != config_.name() && err != nullptr) {
      *err = paddle::Error("no such name of evaluator %s", name.c_str());
      return .0f;
    }
    return this->getValueImpl();
  }

Y
Yu Yang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
  virtual std::string getValueStr(const std::string& name,
                                  paddle::Error* err = nullptr) const {
    paddle::Error localErr;
    if (err == nullptr) {
      err = &localErr;
    }
    real result = this->getValue(name, err);
    if (!err->isOK()) {
      return "";
    } else {
      return std::to_string(result);
    }
  }

Y
Stash  
Yu Yang 已提交
148 149 150 151 152 153 154 155 156 157
  virtual std::string getType(const std::string& name,
                              paddle::Error* err = nullptr) const {
    if (name != config_.name() && err != nullptr) {
      *err = paddle::Error("no such name of evaluator %s", name.c_str());
      return std::string();
    }
    return this->getTypeImpl();
  }

protected:
Y
Yu Yang 已提交
158 159 160
  virtual real getValueImpl() const {
    return numSamples_ != .0 ? totalScore_ / numSamples_ : .0;
  }
Y
Stash  
Yu Yang 已提交
161 162 163

  virtual std::string getTypeImpl() const { return "base"; }

Z
zhangjinchao01 已提交
164 165 166 167 168 169
protected:
  EvaluatorConfig config_;
  double numSamples_;
  double totalScore_;
};

Y
Yu Yang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
class NotGetableEvaluator : public Evaluator {
  // Evaluator interface
public:
  void getNames(std::vector<std::string>* names) {}

  real getValue(const std::string& name, Error* err) const {
    if (err != nullptr) {
      *err = Error("Not implemented");
    }
    return .0f;
  }
  std::string getType(const std::string& name, Error* err) const {
    if (err != nullptr) {
      *err = Error("Not implemented");
    }
    return "";
  }
};

Z
zhangjinchao01 已提交
189 190 191 192 193 194 195 196 197 198 199
class DummyEvaluator : public Evaluator {
public:
  DummyEvaluator() {}
  virtual void init(const EvaluatorConfig&) {}
  virtual void start() {}
  virtual void eval(const NeuralNetwork&) {}
  virtual real evalImp(std::vector<Argument>& arguments) {
    (void)arguments;
    return -1;
  }
  virtual void finish() {}
Y
Yu Yang 已提交
200
  virtual void printStats(std::ostream&) const {}
Y
Stash  
Yu Yang 已提交
201 202 203 204

  // Evaluator interface
protected:
  std::string getTypeImpl() const;
Z
zhangjinchao01 已提交
205
};
Q
qijun 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/**
 * @brief evaluate AUC using colIdx-th column as prediction.
 * The AUC(Area Under the Curve) is a common evaluation metric
 * for binary classification problems. It computes the area under
 * the receiver operating characteristic(ROC) curve.
 *
 * @note colIdx-th column
 *
 * - colIdx = 0: the 0-th column.
 * - colIdx > 0: the colIdx-th column.
 * - colIdx < 0: the last colIdx-th column.
 *
 * The config file api is auc_evaluator.
 *
 */
Z
zhangjinchao01 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233
class AucEvaluator : public Evaluator {
public:
  AucEvaluator(int32_t colIdx)
      : colIdx_(colIdx),
        realColumnIdx_(0),
        cpuOutput_(nullptr),
        cpuLabel_(nullptr),
        cpuWeight_(nullptr) {}

  virtual void start();

  virtual real evalImp(std::vector<Argument>& arguments);

Y
Yu Yang 已提交
234
  virtual void printStats(std::ostream& os) const {
Z
zhangjinchao01 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
    os << config_.name() << "=" << calcAuc();
  }

  virtual void distributeEval(ParameterClient2* client);

private:
  static const uint32_t kBinNum_ = (1 << 24) - 1;
  static const int kNegativeLabel_ = 0;
  double statPos_[kBinNum_ + 1];
  double statNeg_[kBinNum_ + 1];
  int32_t colIdx_;
  uint32_t realColumnIdx_;
  MatrixPtr cpuOutput_;
  IVectorPtr cpuLabel_;
  MatrixPtr cpuWeight_;

  AucEvaluator() {}

253 254 255
  inline static double trapezoidArea(double X1,
                                     double X2,
                                     double Y1,
Z
zhangjinchao01 已提交
256 257 258 259
                                     double Y2) {
    return (X1 > X2 ? (X1 - X2) : (X2 - X1)) * (Y1 + Y2) / 2.0;
  }

Y
Yu Yang 已提交
260
  double calcAuc() const;
Y
Stash  
Yu Yang 已提交
261 262 263 264 265

  // Evaluator interface
protected:
  real getValueImpl() const;
  std::string getTypeImpl() const;
Z
zhangjinchao01 已提交
266 267 268
};

/**
Q
qijun 已提交
269 270 271 272 273
 * @brief RankAucEvaluator calculates the AUC of each list (i.e., titles
 * under the same query), and averages them. Each list should be organized
 * as a sequence. The inputs of this evaluator is [output, click, pv]. If pv
 * is not provided, it will be set to 1. The types of click and pv are
 * dense value.
Z
zhangjinchao01 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
 */
class RankAucEvaluator : public Evaluator {
public:
  // evaluate ranking AUC
  virtual void start();

  virtual void updateSamplesNum(const std::vector<Argument>& arguments);

  virtual real evalImp(std::vector<Argument>& arguments);

  virtual void distributeEval(ParameterClient2* client) {
    mergeResultsOfAllClients(client);
  }

private:
  MatrixPtr output_;
  MatrixPtr click_;
  MatrixPtr pv_;
  std::vector<std::pair<real, int>> outputPair_;

294 295 296
  double calcRankAuc(real* outputData,
                     real* clickData,
                     real* pvData,
Z
zhangjinchao01 已提交
297
                     size_t size);
Y
Yu Yang 已提交
298 299 300 301

  // Evaluator interface
protected:
  std::string getTypeImpl() const;
Z
zhangjinchao01 已提交
302
};
Q
qijun 已提交
303 304 305 306 307 308 309 310 311 312
/**
 * @brief precision, recall and f1 score Evaluator
 * \f[
 * precision = \frac{tp}{tp+tn} \\
 * recall=\frac{tp}{tp+fn} \\
 * f1=2*\frac{precsion*recall}{precision+recall}
 * \f]
 *
 * The config file api is precision_recall_evaluator.
 */
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325
class PrecisionRecallEvaluator : public Evaluator {
public:
  // Evaluate precision, recall and F1 score
  PrecisionRecallEvaluator()
      : isMultiBinaryLabel_(false),
        cpuOutput_(nullptr),
        cpuLabel_(nullptr),
        cpuWeight_(nullptr) {}

  virtual void start();

  virtual real evalImp(std::vector<Argument>& arguments);

Y
Yu Yang 已提交
326
  virtual void printStats(std::ostream& os) const;
Z
zhangjinchao01 已提交
327 328 329 330

  virtual void distributeEval(ParameterClient2* client);

  struct StatsInfo {
331 332 333 334 335 336 337 338
    /// numbers of true positives
    double TP;
    /// numbers of true negatives
    double TN;
    /// numbers of false positives
    double FP;
    /// numbers of false negatives
    double FN;
Z
zhangjinchao01 已提交
339 340 341 342 343 344 345 346 347 348 349 350

    StatsInfo() : TP(0.0), TN(0.0), FP(0.0), FN(0.0) {}
  };

private:
  bool isMultiBinaryLabel_;
  std::vector<StatsInfo> statsInfo_;

  MatrixPtr cpuOutput_;
  IVectorPtr cpuLabel_;
  MatrixPtr cpuWeight_;

Y
Yu Yang 已提交
351 352 353
  template <typename T1, typename T2>
  void printStatsHelper(T1 labelCallback, T2 microAvgCallback) const;

354 355
  void calcStatsInfo(const MatrixPtr& output,
                     const IVectorPtr& label,
Z
zhangjinchao01 已提交
356 357
                     const MatrixPtr& weight);

358 359
  void calcStatsInfoMulti(const MatrixPtr& output,
                          const MatrixPtr& label,
Z
zhangjinchao01 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
                          const MatrixPtr& weight);

  inline static double calcPrecision(double TP, double FP) {
    if (TP > 0.0 || FP > 0.0) {
      return TP / (TP + FP);
    } else {
      return 1.0;
    }
  }

  inline static double calcRecall(double TP, double FN) {
    if (TP > 0.0 || FN > 0.0) {
      return TP / (TP + FN);
    } else {
      return 1.0;
    }
  }

  inline static double calcF1Score(double precision, double recall) {
    if (precision > 0.0 || recall > 0.0) {
      return 2 * precision * recall / (precision + recall);
    } else {
      return 0;
    }
  }
Y
Yu Yang 已提交
385 386 387 388 389 390 391 392 393

  mutable std::unordered_map<std::string, real> values_;

  void storeLocalValues() const;
  // Evaluator interface
public:
  void getNames(std::vector<std::string>* names);
  real getValue(const std::string& name, Error* err) const;
  std::string getType(const std::string& name, Error* err) const;
Z
zhangjinchao01 已提交
394 395
};

Q
qijun 已提交
396 397 398 399
/*
 * @brief positive-negative pair rate Evaluator
 *
 * The config file api is pnpair_evaluator.
Z
zhangjinchao01 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
 */
class PnpairEvaluator : public Evaluator {
public:
  PnpairEvaluator()
      : cpuOutput_(nullptr),
        cpuLabel_(nullptr),
        cpuInfo_(nullptr),
        cpuWeight_(nullptr) {}

  virtual void start();
  virtual real evalImp(std::vector<Argument>& arguments);

  struct PredictionResult {
    PredictionResult(real __out, int __label, int __queryid, real __weight)
        : out(__out), label(__label), queryid(__queryid), weight(__weight) {}
    real out;
    int label;
    int queryid;
    real weight;
  };
  std::vector<PredictionResult> predictArray_;
  void printPredictResults() {
    std::ofstream fs(FLAGS_predict_file);
    CHECK(fs) << "Fail to open " << FLAGS_predict_file;
    for (auto& res : predictArray_) {
      fs << res.out << " " << res.label << " " << res.queryid << std::endl;
    }
  }

429 430 431 432 433 434
  void stat(size_t start,
            size_t end,
            PredictionResult* answers,
            double& pos,
            double& neg,
            double& spe);
Z
zhangjinchao01 已提交
435 436 437 438
  void calc(std::vector<PredictionResult>& predictArray);

  virtual void finish() { calc(predictArray_); }

Y
Yu Yang 已提交
439
  virtual void printStats(std::ostream& os) const {
Y
Yu Yang 已提交
440
    os << " pos/neg=" << this->getValueImpl();
Z
zhangjinchao01 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  }

  virtual void distributeEval(ParameterClient2* client) {
    client->reduce(pairArray_, pairArray_, kPairArrayNum_, FLAGS_trainer_id, 0);
    LOG(INFO) << " distribute eval calc total pos pair: " << pairArray_[0]
              << " calc total neg pair: " << pairArray_[1];
  }

private:
  static const uint32_t kPairArrayNum_ = 2;
  double pairArray_[kPairArrayNum_];
  MatrixPtr cpuOutput_;
  IVectorPtr cpuLabel_;
  IVectorPtr cpuInfo_;
  MatrixPtr cpuWeight_;
Y
Yu Yang 已提交
456 457 458 459 460 461 462

  // Evaluator interface
protected:
  real getValueImpl() const {
    return pairArray_[0] / ((pairArray_[1] <= 0) ? 1.0 : pairArray_[1]);
  }
  std::string getTypeImpl() const;
Z
zhangjinchao01 已提交
463 464 465
};

}  // namespace paddle