Evaluator.h 9.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#pragma once

#include "paddle/pserver/ParameterClient2.h"
#include "paddle/utils/ClassRegistrar.h"
#include "ModelConfig.pb.h"
#include "paddle/parameter/Argument.h"
#include <fstream>

namespace paddle {

class NeuralNetwork;
Q
qijun 已提交
27 28 29 30
/**
 * @def REGISTER_EVALUATOR
 * @brief Macro for registering evaluator class
 */
Z
zhangjinchao01 已提交
31 32 33 34 35

#define REGISTER_EVALUATOR(__type_name, __class_name)                \
  static InitFunction __reg_type_##__type_name([]() {                \
    Evaluator::registrar_.registerClass<__class_name>(#__type_name); \
  })
Q
qijun 已提交
36 37 38 39 40 41
/**
 * @brief Base class for Evaluator
 * Evaluating the performance of a model is very important.
 * It indicates how successful the scores(predictions) of a datasets
 * has been by a trained model.
 */
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48 49 50 51 52
class Evaluator {
public:
  static Evaluator* create(const EvaluatorConfig& config);

  Evaluator() : numSamples_(0), totalScore_(0) {}

  virtual ~Evaluator() {}

  virtual void init(const EvaluatorConfig& config) { config_ = config; }

  /**
Q
qijun 已提交
53
   * @brief start to evaluate some data
Z
zhangjinchao01 已提交
54 55 56 57 58 59 60
   */
  virtual void start() {
    numSamples_ = 0;
    totalScore_ = 0;
  }

  /**
Q
qijun 已提交
61
   * @brief Process a batch of data.
Z
zhangjinchao01 已提交
62 63 64 65
   */
  virtual void eval(const NeuralNetwork& nn);

  /**
Q
qijun 已提交
66 67 68 69
   * @brief Process a batch of data.
   * @return the score for the batch if it make sense to sum the score across
   * batches.
   * @note Otherwise evaluator should return 0 and override finish() and
Z
zhangjinchao01 已提交
70 71 72 73 74
   * printStats() to do the right calculation.
   */
  virtual real evalImp(std::vector<Argument>& arguments) = 0;

  /**
Q
qijun 已提交
75
   * @brief Update the number of processed samples
Z
zhangjinchao01 已提交
76 77 78 79 80
   */
  virtual void updateSamplesNum(const std::vector<Argument>& arguments) {
    numSamples_ += arguments[0].getBatchSize();
  }

81
  /// finish() should be called before distributeEval
Z
zhangjinchao01 已提交
82 83 84 85 86 87 88 89 90 91 92 93
  virtual void distributeEval(ParameterClient2* client) {
    LOG(FATAL) << "Not implemeted";
  }

  void mergeResultsOfAllClients(ParameterClient2* client) {
    double data[2] = {totalScore_, numSamples_};
    client->reduce(data, data, 2, FLAGS_trainer_id, 0);
    totalScore_ = data[0];
    numSamples_ = data[1];
  }

  /**
Q
qijun 已提交
94
   * @brief finish the evaluation.
Z
zhangjinchao01 已提交
95 96 97
   */
  virtual void finish() {}

Q
qijun 已提交
98 99 100 101
  /**
   * @brief print the statistics of evaluate result
   * @note finish() should be called before printStats
   */
Y
Yu Yang 已提交
102
  virtual void printStats(std::ostream& os) const {
Z
zhangjinchao01 已提交
103 104 105 106 107
    os << config_.name() << "="
       << (numSamples_ ? totalScore_ / numSamples_ : 0);
  }

  friend std::ostream& operator<<(std::ostream& os,
Y
Yu Yang 已提交
108
                                  const Evaluator& evaluator) {
Z
zhangjinchao01 已提交
109 110 111 112 113
    evaluator.printStats(os);
    return os;
  }

  friend std::ostream&& operator<<(std::ostream&& os,    // NOLINT
Y
Yu Yang 已提交
114
                                   const Evaluator& evaluator) {
Z
zhangjinchao01 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    evaluator.printStats(os);
    return std::move(os);
  }

  static ClassRegistrar<Evaluator> registrar_;

protected:
  EvaluatorConfig config_;
  double numSamples_;
  double totalScore_;
};

class DummyEvaluator : public Evaluator {
public:
  DummyEvaluator() {}
  virtual void init(const EvaluatorConfig&) {}
  virtual void start() {}
  virtual void eval(const NeuralNetwork&) {}
  virtual real evalImp(std::vector<Argument>& arguments) {
    (void)arguments;
    return -1;
  }
  virtual void finish() {}
Y
Yu Yang 已提交
138
  virtual void printStats(std::ostream&) const {}
Z
zhangjinchao01 已提交
139
};
Q
qijun 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/**
 * @brief evaluate AUC using colIdx-th column as prediction.
 * The AUC(Area Under the Curve) is a common evaluation metric
 * for binary classification problems. It computes the area under
 * the receiver operating characteristic(ROC) curve.
 *
 * @note colIdx-th column
 *
 * - colIdx = 0: the 0-th column.
 * - colIdx > 0: the colIdx-th column.
 * - colIdx < 0: the last colIdx-th column.
 *
 * The config file api is auc_evaluator.
 *
 */
Z
zhangjinchao01 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167
class AucEvaluator : public Evaluator {
public:
  AucEvaluator(int32_t colIdx)
      : colIdx_(colIdx),
        realColumnIdx_(0),
        cpuOutput_(nullptr),
        cpuLabel_(nullptr),
        cpuWeight_(nullptr) {}

  virtual void start();

  virtual real evalImp(std::vector<Argument>& arguments);

Y
Yu Yang 已提交
168
  virtual void printStats(std::ostream& os) const {
Z
zhangjinchao01 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    os << config_.name() << "=" << calcAuc();
  }

  virtual void distributeEval(ParameterClient2* client);

private:
  static const uint32_t kBinNum_ = (1 << 24) - 1;
  static const int kNegativeLabel_ = 0;
  double statPos_[kBinNum_ + 1];
  double statNeg_[kBinNum_ + 1];
  int32_t colIdx_;
  uint32_t realColumnIdx_;
  MatrixPtr cpuOutput_;
  IVectorPtr cpuLabel_;
  MatrixPtr cpuWeight_;

  AucEvaluator() {}

  inline static double trapezoidArea(double X1, double X2, double Y1,
                                     double Y2) {
    return (X1 > X2 ? (X1 - X2) : (X2 - X1)) * (Y1 + Y2) / 2.0;
  }

Y
Yu Yang 已提交
192
  double calcAuc() const;
Z
zhangjinchao01 已提交
193 194 195
};

/**
Q
qijun 已提交
196 197 198 199 200
 * @brief RankAucEvaluator calculates the AUC of each list (i.e., titles
 * under the same query), and averages them. Each list should be organized
 * as a sequence. The inputs of this evaluator is [output, click, pv]. If pv
 * is not provided, it will be set to 1. The types of click and pv are
 * dense value.
Z
zhangjinchao01 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
 */
class RankAucEvaluator : public Evaluator {
public:
  // evaluate ranking AUC
  virtual void start();

  virtual void updateSamplesNum(const std::vector<Argument>& arguments);

  virtual real evalImp(std::vector<Argument>& arguments);

  virtual void distributeEval(ParameterClient2* client) {
    mergeResultsOfAllClients(client);
  }

private:
  MatrixPtr output_;
  MatrixPtr click_;
  MatrixPtr pv_;
  std::vector<std::pair<real, int>> outputPair_;

  double calcRankAuc(real* outputData, real* clickData, real* pvData,
                     size_t size);
};
Q
qijun 已提交
224 225 226 227 228 229 230 231 232 233
/**
 * @brief precision, recall and f1 score Evaluator
 * \f[
 * precision = \frac{tp}{tp+tn} \\
 * recall=\frac{tp}{tp+fn} \\
 * f1=2*\frac{precsion*recall}{precision+recall}
 * \f]
 *
 * The config file api is precision_recall_evaluator.
 */
Z
zhangjinchao01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
class PrecisionRecallEvaluator : public Evaluator {
public:
  // Evaluate precision, recall and F1 score
  PrecisionRecallEvaluator()
      : isMultiBinaryLabel_(false),
        cpuOutput_(nullptr),
        cpuLabel_(nullptr),
        cpuWeight_(nullptr) {}

  virtual void start();

  virtual real evalImp(std::vector<Argument>& arguments);

Y
Yu Yang 已提交
247
  virtual void printStats(std::ostream& os) const;
Z
zhangjinchao01 已提交
248 249 250 251

  virtual void distributeEval(ParameterClient2* client);

  struct StatsInfo {
252 253 254 255 256 257 258 259
    /// numbers of true positives
    double TP;
    /// numbers of true negatives
    double TN;
    /// numbers of false positives
    double FP;
    /// numbers of false negatives
    double FN;
Z
zhangjinchao01 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

    StatsInfo() : TP(0.0), TN(0.0), FP(0.0), FN(0.0) {}
  };

private:
  bool isMultiBinaryLabel_;
  std::vector<StatsInfo> statsInfo_;

  MatrixPtr cpuOutput_;
  IVectorPtr cpuLabel_;
  MatrixPtr cpuWeight_;

  void calcStatsInfo(const MatrixPtr& output, const IVectorPtr& label,
                     const MatrixPtr& weight);

  void calcStatsInfoMulti(const MatrixPtr& output, const MatrixPtr& label,
                          const MatrixPtr& weight);

  inline static double calcPrecision(double TP, double FP) {
    if (TP > 0.0 || FP > 0.0) {
      return TP / (TP + FP);
    } else {
      return 1.0;
    }
  }

  inline static double calcRecall(double TP, double FN) {
    if (TP > 0.0 || FN > 0.0) {
      return TP / (TP + FN);
    } else {
      return 1.0;
    }
  }

  inline static double calcF1Score(double precision, double recall) {
    if (precision > 0.0 || recall > 0.0) {
      return 2 * precision * recall / (precision + recall);
    } else {
      return 0;
    }
  }
};

Q
qijun 已提交
303 304 305 306
/*
 * @brief positive-negative pair rate Evaluator
 *
 * The config file api is pnpair_evaluator.
Z
zhangjinchao01 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
 */
class PnpairEvaluator : public Evaluator {
public:
  PnpairEvaluator()
      : cpuOutput_(nullptr),
        cpuLabel_(nullptr),
        cpuInfo_(nullptr),
        cpuWeight_(nullptr) {}

  virtual void start();
  virtual real evalImp(std::vector<Argument>& arguments);

  struct PredictionResult {
    PredictionResult(real __out, int __label, int __queryid, real __weight)
        : out(__out), label(__label), queryid(__queryid), weight(__weight) {}
    real out;
    int label;
    int queryid;
    real weight;
  };
  std::vector<PredictionResult> predictArray_;
  void printPredictResults() {
    std::ofstream fs(FLAGS_predict_file);
    CHECK(fs) << "Fail to open " << FLAGS_predict_file;
    for (auto& res : predictArray_) {
      fs << res.out << " " << res.label << " " << res.queryid << std::endl;
    }
  }

  void stat(size_t start, size_t end, PredictionResult* answers, double& pos,
            double& neg, double& spe);
  void calc(std::vector<PredictionResult>& predictArray);

  virtual void finish() { calc(predictArray_); }

Y
Yu Yang 已提交
342
  virtual void printStats(std::ostream& os) const {
Z
zhangjinchao01 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    os << " pos/neg"
       << "=" << pairArray_[0] / ((pairArray_[1] <= 0) ? 1.0 : pairArray_[1]);
  }

  virtual void distributeEval(ParameterClient2* client) {
    client->reduce(pairArray_, pairArray_, kPairArrayNum_, FLAGS_trainer_id, 0);
    LOG(INFO) << " distribute eval calc total pos pair: " << pairArray_[0]
              << " calc total neg pair: " << pairArray_[1];
  }

private:
  static const uint32_t kPairArrayNum_ = 2;
  double pairArray_[kPairArrayNum_];
  MatrixPtr cpuOutput_;
  IVectorPtr cpuLabel_;
  IVectorPtr cpuInfo_;
  MatrixPtr cpuWeight_;
};

}  // namespace paddle