vol2col.cu 15.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15 16
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/math/vol2col.h"
D
dzhwinter 已提交
18
#include "paddle/fluid/platform/cuda_primitives.h"
F
feng_shuai 已提交
19
#include "paddle/fluid/platform/gpu_launch_config.h"
C
chengduoZH 已提交
20 21 22 23 24 25 26

namespace paddle {
namespace operators {
namespace math {

template <class T>
__global__ void vol2col(int num_kernels, const T* data_vol, int depth,
C
chengduoZH 已提交
27 28 29 30 31
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
32 33 34 35 36 37
                        int output_width, T* data_col,
                        const DataLayout data_layout) {
  int input_channels =
      num_kernels / output_detph / output_height / output_width;
  int channels_col =
      input_channels * filter_depth * filter_height * filter_width;
C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    int w_out = index % output_width;
    int h_out = (index / output_width) % output_height;
    int d_out = (index / output_width / output_height) % output_detph;
    int channel_in = index / output_width / output_height / output_detph;
    int channel_out = channel_in * filter_depth * filter_height * filter_width;
    int w_in = w_out * stride_width - padding_width;
    int h_in = h_out * stride_height - padding_height;
    int d_in = d_out * stride_depth - padding_depth;

    data_col += ((channel_out * output_detph + d_out) * output_height + h_out) *
                    output_width +
                w_out;
    for (int k = 0; k < filter_depth; ++k) {
      for (int i = 0; i < filter_height; ++i) {
        for (int j = 0; j < filter_width; ++j) {
C
chengduoZH 已提交
55 56 57
          int d = d_in + k * dilation_d;
          int h = h_in + i * dilation_h;
          int w = w_in + j * dilation_w;
58
          int vol_idx;
59
          if (data_layout != DataLayout::kNHWC) {
60 61 62 63 64
            vol_idx = ((channel_in * depth + d) * height + h) * width + w;
          } else {
            vol_idx =
                ((d * height + h) * width + w) * input_channels + channel_in;
          }
C
chengduoZH 已提交
65 66
          *data_col = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
                       w < width)
67
                          ? data_vol[vol_idx]
C
chengduoZH 已提交
68 69 70 71 72 73 74 75 76
                          : 0;
          data_col += output_detph * output_height * output_width;
        }
      }
    }
  }
}

/*
77 78 79 80
 * im = [input_channels,intpu_depth, input_height, input_width] for
 * channels_first
 * im = [input_depth, input_height, input_width, input_channels] for
 * channels_last
C
chengduoZH 已提交
81 82 83 84 85
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
86
class Vol2ColFunctor<platform::CUDADeviceContext, T> {
C
chengduoZH 已提交
87
 public:
Q
QI JUN 已提交
88
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
89 90 91
                  const framework::Tensor& vol,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
92 93
                  const std::vector<int>& paddings, framework::Tensor* col,
                  const DataLayout data_layout) const {
94 95 96 97 98 99 100 101
    PADDLE_ENFORCE_EQ(vol.dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimension of  vol should be 4, but received %d.",
                          vol.dims().size()));
    PADDLE_ENFORCE_EQ(col->dims().size(), 7,
                      platform::errors::InvalidArgument(
                          "The dimension of col should be 7, but received %d.",
                          col->dims().size()));
C
chengduoZH 已提交
102

103
    int input_channels =
104
        (data_layout != DataLayout::kNHWC ? vol.dims()[0] : vol.dims()[3]);
105
    int input_depth =
106
        (data_layout != DataLayout::kNHWC ? vol.dims()[1] : vol.dims()[0]);
107
    int input_height =
108
        (data_layout != DataLayout::kNHWC ? vol.dims()[2] : vol.dims()[1]);
109
    int input_width =
110
        (data_layout != DataLayout::kNHWC ? vol.dims()[3] : vol.dims()[2]);
C
chengduoZH 已提交
111 112 113 114 115 116
    int filter_depth = col->dims()[1];
    int filter_height = col->dims()[2];
    int filter_width = col->dims()[3];
    int output_depth = col->dims()[4];
    int output_height = col->dims()[5];
    int output_width = col->dims()[6];
C
chengduoZH 已提交
117

L
liym27 已提交
118 119 120 121 122 123 124
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
    PADDLE_ENFORCE_EQ(
        input_depth_tmp, output_depth,
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
            input_depth_tmp, output_depth));
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
    PADDLE_ENFORCE_EQ(
        input_height_tmp, output_height,
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
            input_height_tmp, output_height));
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
    PADDLE_ENFORCE_EQ(
        input_width_tmp, output_width,
        platform::errors::InvalidArgument(
            "input_width(%d) and output_width(%d) are mismatching.",
            input_width_tmp, output_width));
C
chengduoZH 已提交
152

C
chengduoZH 已提交
153 154 155
    int num_outputs =
        input_channels * output_depth * output_height * output_width;

F
feng_shuai 已提交
156 157 158 159 160 161 162 163
    int max_threads = 1024;
#ifdef WITH_NV_JETSON
    platform::ChangeThreadNum(context, &max_threads);
#endif

    const int threads = max_threads;
    const int blocks = (num_outputs + max_threads - 1) / max_threads;

Q
QI JUN 已提交
164
    vol2col<T><<<blocks, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
165
        num_outputs, vol.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
166
        dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
L
liym27 已提交
167
        filter_width, strides[0], strides[1], strides[2], pad_d_forth, pad_h_up,
168 169
        pad_w_left, output_depth, output_height, output_width, col->data<T>(),
        data_layout);
C
chengduoZH 已提交
170 171 172 173 174
  }
};

template <class T>
__global__ void col2vol(int num_kernels, const T* data_col, int depth,
C
chengduoZH 已提交
175 176 177 178 179
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
180 181
                        int output_width, T* data_vol,
                        const DataLayout data_layout) {
C
chengduoZH 已提交
182 183 184 185
  const int d_filter_depth = dilation_d * (filter_depth - 1) + 1;
  const int d_filter_height = dilation_h * (filter_height - 1) + 1;
  const int d_filter_width = dilation_w * (filter_width - 1) + 1;

186
  int input_channels = num_kernels / depth / height / width;
C
chengduoZH 已提交
187 188 189
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    T src_val = 0;
190
    int w = (data_layout != DataLayout::kNHWC
191 192
                 ? index % width + padding_width
                 : (index / input_channels) % width + padding_width);
193
    int h = (data_layout != DataLayout::kNHWC
194 195
                 ? (index / width) % height + padding_height
                 : (index / input_channels / width) % height + padding_height);
196
    int d = (data_layout != DataLayout::kNHWC
197 198
                 ? (index / width / height) % depth + padding_depth
                 : index / input_channels / width / height + padding_depth);
199
    int c = (data_layout != DataLayout::kNHWC ? index / width / height / depth
200
                                              : index % input_channels);
C
chengduoZH 已提交
201

C
chengduoZH 已提交
202 203
    // compute the start and end of the output
    int w_col_start =
C
chengduoZH 已提交
204
        (w < d_filter_width) ? 0 : (w - d_filter_width) / stride_width + 1;
C
chengduoZH 已提交
205 206
    int w_col_end = min(w / stride_width + 1, output_width);
    int h_col_start =
C
chengduoZH 已提交
207
        (h < d_filter_height) ? 0 : (h - d_filter_height) / stride_height + 1;
C
chengduoZH 已提交
208 209
    int h_col_end = min(h / stride_height + 1, output_height);
    int d_col_start =
C
chengduoZH 已提交
210
        (d < d_filter_depth) ? 0 : (d - d_filter_depth) / stride_depth + 1;
C
chengduoZH 已提交
211 212 213 214 215
    int d_col_end = min(d / stride_depth + 1, output_detph);

    for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
C
chengduoZH 已提交
216 217 218 219 220 221 222 223 224 225 226 227
          int d_off = (d - d_col * stride_depth);
          int h_off = (h - h_col * stride_height);
          int w_off = (w - w_col * stride_width);
          if (d_off % dilation_d == 0 && h_off % dilation_h == 0 &&
              w_off % dilation_w == 0) {
            d_off /= dilation_d;
            h_off /= dilation_h;
            w_off /= dilation_w;

            int data_col_index =
                (((((c * filter_depth + d_off) * filter_height + h_off) *
                       filter_width +
228 229 230
                   w_off)));
            data_col_index =
                ((data_col_index * output_detph + d_col) * output_height +
C
chengduoZH 已提交
231 232 233 234 235
                 h_col) *
                    output_width +
                w_col;
            src_val += data_col[data_col_index];
          }
C
chengduoZH 已提交
236 237 238 239 240 241 242 243
        }
      }
    }
    data_vol[index] = src_val;
  }
}

/*
244 245 246 247
 * im = [input_channels,intpu_depth, input_height, input_width] for
 * channels_first
 * im = [input_depth, input_height, input_width, input_channels] for
 * channels_last
C
chengduoZH 已提交
248 249 250 251 252
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
253
class Col2VolFunctor<platform::CUDADeviceContext, T> {
C
chengduoZH 已提交
254
 public:
Q
QI JUN 已提交
255
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
256 257 258
                  const framework::Tensor& col,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
259 260
                  const std::vector<int>& paddings, framework::Tensor* vol,
                  const DataLayout data_layout) const {
261 262 263 264 265 266 267 268
    PADDLE_ENFORCE_EQ(vol->dims().size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimension of vol  should be 4, but received %d.",
                          vol->dims().size()));
    PADDLE_ENFORCE_EQ(col.dims().size(), 7,
                      platform::errors::InvalidArgument(
                          "The dimension of col  should be 7, but received %d.",
                          col.dims().size()));
C
chengduoZH 已提交
269

270
    int input_channels =
271
        (data_layout != DataLayout::kNHWC ? vol->dims()[0] : vol->dims()[3]);
272
    int input_depth =
273
        (data_layout != DataLayout::kNHWC ? vol->dims()[1] : vol->dims()[0]);
274
    int input_height =
275
        (data_layout != DataLayout::kNHWC ? vol->dims()[2] : vol->dims()[1]);
276
    int input_width =
277
        (data_layout != DataLayout::kNHWC ? vol->dims()[3] : vol->dims()[2]);
C
chengduoZH 已提交
278 279 280 281 282 283 284
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];

L
liym27 已提交
285 286 287 288 289 290 291 292
    bool paddings_size_is_6 = (paddings.size() == 6);
    int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
    int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
    int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
    int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
    int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
    int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];

293 294 295 296
    auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                            ((dilations[0] * (filter_depth - 1) + 1))) /
                               strides[0] +
                           1;
297 298 299 300 301
    PADDLE_ENFORCE_EQ(
        input_depth_tmp, output_depth,
        platform::errors::InvalidArgument(
            "input_depth(%d) and output_depth(%d) are mismatching.",
            input_depth_tmp, output_depth));
302 303 304 305
    auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                             ((dilations[1] * (filter_height - 1) + 1))) /
                                strides[1] +
                            1;
306 307 308 309 310
    PADDLE_ENFORCE_EQ(
        input_height_tmp, output_height,
        platform::errors::InvalidArgument(
            "input_height(%d) and output_height(%d) are mismatching.",
            input_height_tmp, output_height));
311 312 313 314
    auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                            ((dilations[2] * (filter_width - 1) + 1))) /
                               strides[2] +
                           1;
315 316 317 318 319
    PADDLE_ENFORCE_EQ(
        input_width_tmp, output_width,
        platform::errors::InvalidArgument(
            "input_width(%d) and output_width(%d) are mismatching.",
            input_width_tmp, output_width));
C
chengduoZH 已提交
320

C
chengduoZH 已提交
321 322
    int num_kernels = input_channels * input_depth * input_height * input_width;

F
feng_shuai 已提交
323 324 325 326 327 328 329
    int max_threads = 1024;
#ifdef WITH_NV_JETSON
    platform::ChangeThreadNum(context, &max_threads);
#endif

    const int threads = max_threads;
    const int blocks = (num_kernels + max_threads - 1) / max_threads;
C
chengduoZH 已提交
330

Q
QI JUN 已提交
331
    col2vol<T><<<blocks, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
332
        num_kernels, col.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
333
        dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
L
liym27 已提交
334
        filter_width, strides[0], strides[1], strides[2], pad_d_forth, pad_h_up,
335 336
        pad_w_left, output_depth, output_height, output_width, vol->data<T>(),
        data_layout);
C
chengduoZH 已提交
337 338 339
  }
};

Q
QI JUN 已提交
340 341 342 343
template class Vol2ColFunctor<platform::CUDADeviceContext, float>;
template class Vol2ColFunctor<platform::CUDADeviceContext, double>;
template class Col2VolFunctor<platform::CUDADeviceContext, float>;
template class Col2VolFunctor<platform::CUDADeviceContext, double>;
C
chengduoZH 已提交
344 345 346 347

}  // namespace math
}  // namespace operators
}  // namespace paddle