vol2col.cu 10.8 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/vol2col.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

template <class T>
__global__ void vol2col(int num_kernels, const T* data_vol, int depth,
C
chengduoZH 已提交
24 25 26 27 28 29
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
                        int output_width, T* data_col) {
C
chengduoZH 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    int w_out = index % output_width;
    int h_out = (index / output_width) % output_height;
    int d_out = (index / output_width / output_height) % output_detph;
    int channel_in = index / output_width / output_height / output_detph;
    int channel_out = channel_in * filter_depth * filter_height * filter_width;
    int w_in = w_out * stride_width - padding_width;
    int h_in = h_out * stride_height - padding_height;
    int d_in = d_out * stride_depth - padding_depth;

    data_col += ((channel_out * output_detph + d_out) * output_height + h_out) *
                    output_width +
                w_out;
    data_vol += ((channel_in * depth + d_in) * height + h_in) * width + w_in;
    for (int k = 0; k < filter_depth; ++k) {
      for (int i = 0; i < filter_height; ++i) {
        for (int j = 0; j < filter_width; ++j) {
C
chengduoZH 已提交
48 49 50 51 52
          int d = d_in + k * dilation_d;
          int h = h_in + i * dilation_h;
          int w = w_in + j * dilation_w;
          int col_idx = (k * dilation_d * height + i * dilation_h) * width +
                        j * dilation_w;
C
chengduoZH 已提交
53 54
          *data_col = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
                       w < width)
C
chengduoZH 已提交
55
                          ? data_vol[col_idx]
C
chengduoZH 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
                          : 0;
          data_col += output_detph * output_height * output_width;
        }
      }
    }
  }
}

/*
 * im = [input_channels,intpu_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
71
class Vol2ColFunctor<platform::CUDADeviceContext, T> {
C
chengduoZH 已提交
72
 public:
Q
QI JUN 已提交
73
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
74 75 76 77 78
                  const framework::Tensor& vol,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  framework::Tensor* col) const {
C
chengduoZH 已提交
79
    PADDLE_ENFORCE(vol.dims().size() == 4);
C
chengduoZH 已提交
80
    PADDLE_ENFORCE(col->dims().size() == 7);
C
chengduoZH 已提交
81 82 83 84 85

    int input_channels = vol.dims()[0];
    int input_depth = vol.dims()[1];
    int input_height = vol.dims()[2];
    int input_width = vol.dims()[3];
C
chengduoZH 已提交
86 87 88 89 90 91
    int filter_depth = col->dims()[1];
    int filter_height = col->dims()[2];
    int filter_width = col->dims()[3];
    int output_depth = col->dims()[4];
    int output_height = col->dims()[5];
    int output_width = col->dims()[6];
C
chengduoZH 已提交
92

C
chengduoZH 已提交
93 94 95
    PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
                       ((dilations[0] * (filter_depth - 1) + 1))) /
                              strides[0] +
C
chengduoZH 已提交
96 97 98 99
                          1,
                      output_depth,
                      "input_depth and output_depth are "
                      "Mismatching.");
C
chengduoZH 已提交
100 101 102
    PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
                       ((dilations[1] * (filter_height - 1) + 1))) /
                              strides[1] +
C
chengduoZH 已提交
103 104 105 106
                          1,
                      output_height,
                      "input_height and output_height are "
                      "Mismatching.");
C
chengduoZH 已提交
107 108 109
    PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
                       ((dilations[2] * (filter_width - 1) + 1))) /
                              strides[2] +
C
chengduoZH 已提交
110 111 112 113 114
                          1,
                      output_width,
                      "input_width and output_width are "
                      "Mismatching.");

C
chengduoZH 已提交
115 116 117 118 119
    int num_outputs =
        input_channels * output_depth * output_height * output_width;

    const int threads = 1024;
    const int blocks = (num_outputs + 1024 - 1) / 1024;
Q
QI JUN 已提交
120
    vol2col<T><<<blocks, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
121
        num_outputs, vol.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
122 123 124 125
        dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
        filter_width, strides[0], strides[1], strides[2], paddings[0],
        paddings[1], paddings[2], output_depth, output_height, output_width,
        col->data<T>());
C
chengduoZH 已提交
126 127 128 129 130
  }
};

template <class T>
__global__ void col2vol(int num_kernels, const T* data_col, int depth,
C
chengduoZH 已提交
131 132 133 134 135 136 137 138 139 140
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
                        int output_width, T* data_vol) {
  const int d_filter_depth = dilation_d * (filter_depth - 1) + 1;
  const int d_filter_height = dilation_h * (filter_height - 1) + 1;
  const int d_filter_width = dilation_w * (filter_width - 1) + 1;

C
chengduoZH 已提交
141 142 143 144 145 146 147
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    T src_val = 0;
    int w = index % width + padding_width;
    int h = (index / width) % height + padding_height;
    int d = (index / width / height) % depth + padding_depth;
    int c = index / width / height / depth;
C
chengduoZH 已提交
148

C
chengduoZH 已提交
149 150
    // compute the start and end of the output
    int w_col_start =
C
chengduoZH 已提交
151
        (w < d_filter_width) ? 0 : (w - d_filter_width) / stride_width + 1;
C
chengduoZH 已提交
152 153
    int w_col_end = min(w / stride_width + 1, output_width);
    int h_col_start =
C
chengduoZH 已提交
154
        (h < d_filter_height) ? 0 : (h - d_filter_height) / stride_height + 1;
C
chengduoZH 已提交
155 156
    int h_col_end = min(h / stride_height + 1, output_height);
    int d_col_start =
C
chengduoZH 已提交
157
        (d < d_filter_depth) ? 0 : (d - d_filter_depth) / stride_depth + 1;
C
chengduoZH 已提交
158 159 160 161 162
    int d_col_end = min(d / stride_depth + 1, output_detph);

    for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
C
chengduoZH 已提交
163 164 165 166 167 168 169 170 171 172 173 174
          int d_off = (d - d_col * stride_depth);
          int h_off = (h - h_col * stride_height);
          int w_off = (w - w_col * stride_width);
          if (d_off % dilation_d == 0 && h_off % dilation_h == 0 &&
              w_off % dilation_w == 0) {
            d_off /= dilation_d;
            h_off /= dilation_h;
            w_off /= dilation_w;

            int data_col_index =
                (((((c * filter_depth + d_off) * filter_height + h_off) *
                       filter_width +
175 176 177
                   w_off)));
            data_col_index =
                ((data_col_index * output_detph + d_col) * output_height +
C
chengduoZH 已提交
178 179 180 181 182
                 h_col) *
                    output_width +
                w_col;
            src_val += data_col[data_col_index];
          }
C
chengduoZH 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
        }
      }
    }
    data_vol[index] = src_val;
  }
}

/*
 * im = [input_channels, input_depth, input_height, input_width]
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
template <class T>
Q
QI JUN 已提交
197
class Col2VolFunctor<platform::CUDADeviceContext, T> {
C
chengduoZH 已提交
198
 public:
Q
QI JUN 已提交
199
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
200 201 202 203 204 205
                  const framework::Tensor& col,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  framework::Tensor* vol) const {
    PADDLE_ENFORCE(vol->dims().size() == 4);
C
chengduoZH 已提交
206 207
    PADDLE_ENFORCE(col.dims().size() == 7);

C
chengduoZH 已提交
208 209 210 211
    int input_channels = vol->dims()[0];
    int input_depth = vol->dims()[1];
    int input_height = vol->dims()[2];
    int input_width = vol->dims()[3];
C
chengduoZH 已提交
212 213 214 215 216 217 218
    int filter_depth = col.dims()[1];
    int filter_height = col.dims()[2];
    int filter_width = col.dims()[3];
    int output_depth = col.dims()[4];
    int output_height = col.dims()[5];
    int output_width = col.dims()[6];

C
chengduoZH 已提交
219 220 221
    PADDLE_ENFORCE_EQ((input_depth + 2 * paddings[0] -
                       ((dilations[0] * (filter_depth - 1) + 1))) /
                              strides[0] +
C
chengduoZH 已提交
222 223 224 225
                          1,
                      output_depth,
                      "input_depth and output_depth are "
                      "Mismatching.");
C
chengduoZH 已提交
226 227 228
    PADDLE_ENFORCE_EQ((input_height + 2 * paddings[1] -
                       ((dilations[1] * (filter_height - 1) + 1))) /
                              strides[1] +
C
chengduoZH 已提交
229 230 231 232
                          1,
                      output_height,
                      "input_height and output_height are "
                      "Mismatching.");
C
chengduoZH 已提交
233 234 235
    PADDLE_ENFORCE_EQ((input_width + 2 * paddings[2] -
                       ((dilations[2] * (filter_width - 1) + 1))) /
                              strides[2] +
C
chengduoZH 已提交
236 237 238 239 240
                          1,
                      output_width,
                      "input_width and output_width are "
                      "Mismatching.");

C
chengduoZH 已提交
241 242 243 244 245
    int num_kernels = input_channels * input_depth * input_height * input_width;

    const int threads = 1024;
    const int blocks = (num_kernels + 1024 - 1) / 1024;

Q
QI JUN 已提交
246
    col2vol<T><<<blocks, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
247
        num_kernels, col.data<T>(), input_depth, input_height, input_width,
C
chengduoZH 已提交
248 249 250 251
        dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
        filter_width, strides[0], strides[1], strides[2], paddings[0],
        paddings[1], paddings[2], output_depth, output_height, output_width,
        vol->data<T>());
C
chengduoZH 已提交
252 253 254
  }
};

Q
QI JUN 已提交
255 256 257 258
template class Vol2ColFunctor<platform::CUDADeviceContext, float>;
template class Vol2ColFunctor<platform::CUDADeviceContext, double>;
template class Col2VolFunctor<platform::CUDADeviceContext, float>;
template class Col2VolFunctor<platform::CUDADeviceContext, double>;
C
chengduoZH 已提交
259 260 261 262

}  // namespace math
}  // namespace operators
}  // namespace paddle