elementwise_min_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
wip  
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_min_op.h"
W
wanghuancoder 已提交
16

17
#include <string>
W
wanghuancoder 已提交
18

W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
20

W
wanghuancoder 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

34 35 36 37 38 39 40
namespace paddle {
namespace operators {

class ElementwiseMinOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Min"; }
  std::string GetEquation() const override { return "Out = min(X, Y)"; }
41 42

  void AddInputX() override {
N
Noel 已提交
43
    AddInput("X", "The first tensor holding the elements to be compared.");
44 45 46
  }

  void AddInputY() override {
N
Noel 已提交
47
    AddInput("Y", "The second tensor holding the elements to be compared.");
48 49 50 51 52 53
  }

  std::string GetOpFuntionality() const override {
    return "Compare two tensors and returns a new tensor containing the "
           "element-wise minima.";
  }
54 55
};

L
LJQ❤️ 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
class ElementwiseFMinOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "FMin"; }
  std::string GetEquation() const override { return "Out = fmin(X, Y)"; }

  void AddInputX() override {
    AddInput("X", "The first tensor holding the elements to be compared.");
  }

  void AddInputY() override {
    AddInput("Y", "The second tensor holding the elements to be compared.");
  }

  std::string GetOpFuntionality() const override {
    return "Compare two tensors and returns a new tensor containing the "
           "element-wise minima. If the element of one tensor is nan, "
           "return the element value of the other tensor, if both are nan, "
           "return the first nan";
  }
};

H
hong 已提交
77 78
template <typename T>
class ElementwiseMinGradOpMaker : public framework::SingleGradOpMaker<T> {
79
 public:
H
hong 已提交
80
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
81 82

 protected:
83
  void Apply(GradOpPtr<T> op) const override {
84
    op->SetType("elementwise_min_grad");
H
hong 已提交
85 86 87 88 89 90
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
91 92 93
  }
};

L
LJQ❤️ 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
template <typename T>
class ElementwiseFMinGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elementwise_fmin_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

111 112 113
}  // namespace operators
}  // namespace paddle

F
wip  
fengjiayi 已提交
114
namespace ops = paddle::operators;
115 116 117

REGISTER_OPERATOR(elementwise_min, ops::ElementwiseOp,
                  ops::ElementwiseMinOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
118 119
                  ops::ElementwiseMinGradOpMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseMinGradOpMaker<paddle::imperative::OpBase>);
120 121 122

REGISTER_OPERATOR(elementwise_min_grad, ops::ElementwiseOpGrad);

F
wip  
fengjiayi 已提交
123 124 125 126 127 128 129 130 131 132 133
REGISTER_OP_CPU_KERNEL(
    elementwise_min,
    ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    elementwise_min_grad,
    ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, int>,
F
fengjiayi 已提交
134
    ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
135 136 137 138 139 140 141 142 143

REGISTER_OP_VERSION(elementwise_min)
    .AddCheckpoint(
        R"ROC(Register elementwise_min for adding the attribute of Scale_y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_y",
            "In order to support the function of scaling the input Y when "
            "using the operator of elementwise_min.",
            1.0f));
L
LJQ❤️ 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

REGISTER_OPERATOR(elementwise_fmin, ops::ElementwiseOp,
                  ops::ElementwiseFMinOpMaker, ops::ElementwiseOpInferVarType,
                  ops::ElementwiseFMinGradOpMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseFMinGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(elementwise_fmin_grad, ops::ElementwiseOpGrad);

REGISTER_OP_CPU_KERNEL(
    elementwise_fmin,
    ops::ElementwiseFMinKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseFMinKernel<paddle::platform::CPUDeviceContext,
                               paddle::platform::float16>,
    ops::ElementwiseFMinKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseFMinKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseFMinKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    elementwise_fmin_grad,
    ops::ElementwiseFMinGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseFMinGradKernel<paddle::platform::CPUDeviceContext,
                                   paddle::platform::float16>,
    ops::ElementwiseFMinGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseFMinGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::ElementwiseFMinGradKernel<paddle::platform::CPUDeviceContext,
                                   int64_t>);