framework.py 30.8 KB
Newer Older
Y
Yu Yang 已提交
1
import collections
Q
qiaolongfei 已提交
2
import contextlib
3

Y
Yu Yang 已提交
4
import numpy as np
Q
qiaolongfei 已提交
5

6
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
7
from . import core
Y
Yu Yang 已提交
8

9 10
__all__ = [
    'Block', 'Variable', 'Program', 'Operator', 'default_startup_program',
Y
Yu Yang 已提交
11 12
    'default_main_program', 'program_guard', 'switch_startup_program',
    'switch_main_program'
13
]
Y
Yu Yang 已提交
14

Q
qiaolongfei 已提交
15 16 17 18 19 20 21 22 23 24 25 26
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
    return gradient name for a certain var name
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
27

Q
Qiao Longfei 已提交
28
def unique_name(prefix):
29 30 31 32 33 34 35 36 37
    """
    Generate unique names with prefix

    Args:
        prefix(str): The prefix of return string

    Returns(str): A unique string with the prefix

    """
Q
Qiao Longfei 已提交
38 39 40 41
    uid = core.unique_integer(prefix)  # unique during whole process.
    return "_".join([prefix, str(uid)])


42
def convert_np_dtype_to_dtype_(np_dtype):
43 44 45 46 47 48 49 50
    """
    Convert the data type in numpy to the data type in Paddle
    Args:
        np_dtype(np.dtype): the data type in numpy

    Returns(core.DataType): the data type in Paddle

    """
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
        return core.DataType.FP32
    elif dtype == np.float64:
        return core.DataType.FP64
    elif dtype == np.float16:
        return core.DataType.FP16
    elif dtype == np.int32:
        return core.DataType.INT32
    elif dtype == np.int16:
        return core.DataType.INT16
    elif dtype == np.int64:
        return core.DataType.INT64
    elif dtype == np.bool:
        return core.DataType.BOOL
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
71 72 73 74 75 76 77 78 79
    """
    Check the data type is floating or not.
    Args:
        dtype(np.dtype|core.DataType): data type.
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
80 81 82
    if not isinstance(dtype, core.DataType):
        dtype = convert_np_dtype_to_dtype_(dtype)

83
    return dtype in [core.DataType.FP16, core.DataType.FP32, core.DataType.FP64]
84 85


Y
Yang Yang(Tony) 已提交
86
def _debug_string_(proto, throw_on_error=True):
87 88 89 90 91 92 93 94 95 96 97
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
98
    error_fields = list()
Y
Yang Yang(Tony) 已提交
99
    if not proto.IsInitialized(error_fields) and throw_on_error:
Y
Yu Yang 已提交
100 101 102 103 104
        raise ValueError("{0} are not initialized\nThe message is {1}".format(
            error_fields, proto))
    return proto.__str__()


Y
Yu Yang 已提交
105
class Variable(object):
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    """
    Python variable. Every input and output of an operator is a variable. Every
    variable belongs to a block. The variable has a name and two variables in
    different blocks could have the same name.

    There are many kinds of variables. Please reference the framework.proto for
    details.

    Notes: The constructor of Variable should not be invoked directly. Please
    use `Block.create_var` to create a variable.

    >>> cur_program = Program()
    >>> cur_block = cur_program.current_block()
    >>> new_variable = cur_block.create_var(
    >>>                    name="X", shape=[-1, 23, 48], dtype='float32')

    Args:
        block(Block): The associated block. It will be passed by
            `Block.create_var` automatically.
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
        shape(tuple|list|None): The shape of variable. -1 means the batch size.
            Some kinds of variable do not contain shape, just set it to None.
        dtype(np.dtype|core.DataType|str): The data type of variable.
        lod_level(int): The level of lod tensor. 0 means there is not a time
            series data.
        persistable(bool): True if the variable should be saved as check point.
            Defaults to False.
        stop_gradient(bool): True if the variable will stop to calculate
            gradients when backward. Defaults to False.
    """

Y
Yu Yang 已提交
138 139
    def __init__(self,
                 block,
Y
Yu Yang 已提交
140
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
141 142 143 144
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
Q
QI JUN 已提交
145
                 persistable=None,
Y
Yu Yang 已提交
146
                 stop_gradient=False,
Y
Yu Yang 已提交
147
                 **kwargs):
Y
Yu Yang 已提交
148 149 150 151
        self.block = block

        if name is None:
            name = Variable._unique_var_name_()
D
Dong Zhihong 已提交
152 153 154 155
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
156
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
157
            is_new_var = True
Y
Yu Yang 已提交
158

Y
Yu Yang 已提交
159 160 161 162 163 164 165 166
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
167
        if shape is not None:
Y
Yu Yang 已提交
168
            if is_new_var:
169
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
170 171 172 173 174 175 176 177
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
178
        if dtype is not None:
Y
Yu Yang 已提交
179
            if not isinstance(dtype, core.DataType):
180
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
181
            if is_new_var:
F
fengjiayi 已提交
182
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
183
            else:
F
fengjiayi 已提交
184
                old_dtype = self.dtype
Q
QI JUN 已提交
185
                if dtype != old_dtype:
Y
Yu Yang 已提交
186 187 188 189 190
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
191 192

        if lod_level is not None:
Y
Yu Yang 已提交
193
            if is_new_var:
194
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
195 196 197 198 199 200 201
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
202 203 204 205 206 207 208 209 210 211 212
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

Y
Yu Yang 已提交
213
        self.block.vars[name] = self
Y
Yu Yang 已提交
214
        self.op = None
Y
Yu Yang 已提交
215
        self.stop_gradient = stop_gradient
Y
Yu Yang 已提交
216

217
    def __str__(self):
Y
Yang Yang(Tony) 已提交
218 219 220
        return self.to_string(True)

    def to_string(self, throw_on_error):
221 222 223 224 225 226 227 228 229 230
        """
        Get debug string.

        Args:
            throw_on_error(bool): True if raise an exception when self is not
                intialized.

        Returns(str): The debug string.

        """
231 232
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
233
        return _debug_string_(proto, throw_on_error)
234 235 236

    __repr__ = __str__

237 238 239 240
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
241 242 243 244
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
245 246
    @property
    def name(self):
247
        return self.desc.name()
Y
Yu Yang 已提交
248 249 250 251

    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
252
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
253 254

    @property
F
fengjiayi 已提交
255 256
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
257 258 259

    @property
    def lod_level(self):
260
        return self.desc.lod_level()
Y
Yu Yang 已提交
261

Y
Yu Yang 已提交
262 263 264 265
    @property
    def type(self):
        return self.desc.type()

Y
Yu Yang 已提交
266 267
    @staticmethod
    def _unique_var_name_():
268 269 270
        prefix = "_generated_var"
        uid = core.unique_integer(prefix)  # unique during whole process.
        return "_".join([prefix, str(uid)])
Y
Yu Yang 已提交
271

Y
Yu Yang 已提交
272

F
fengjiayi 已提交
273 274 275
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
276 277 278

    Returns(list): list of OpProto

F
fengjiayi 已提交
279 280 281 282 283 284 285 286 287 288
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
289 290 291 292
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
            '_instance'), 'Please use `instance()` to get OpProtoHolder opject!'
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
309 310 311 312 313 314 315 316
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
317 318
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
319 320 321
        return self.op_proto_map[type]


Y
Yu Yang 已提交
322
class Operator(object):
323 324 325 326 327 328
    """
    Python Operator class. The operator represents the build in instructs in a
    Block. Users can use the build in instructs to describe their neural
    network.
    """

Y
Yu Yang 已提交
329 330
    def __init__(self,
                 block,
Y
Yu Yang 已提交
331
                 desc,
Y
Yu Yang 已提交
332 333 334 335
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        """
        Constructor.

        Notes: The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

        >>> cur_program = Program()
        >>> cur_block = cur_program.current_block()
        >>> # var1 += var2 + var3
        >>> cur_block.append_op(type="sum",
        >>>                     inputs={"X": [var1, var2, var3]},
        >>>                     outputs={"Out": [var1]})

        Args:
            block(Block): The block has the current operator
            desc(core.OpDesc): The protobuf description
            type(str): The type of operator.
            inputs(dict): The input dictionary. Key is the input parameter name.
                Value is a list of variables.
            outputs(dict): The output dictionary. Has same format with inputs
            attrs(dict): The attributes dictionary. Key is attribute name. Value
                is the attribute value. The attribute type should be as same as
                the type registered in C++
        """
Y
Yu Yang 已提交
360
        self.block = block
Y
Yu Yang 已提交
361
        self.desc = desc
T
typhoonzero 已提交
362 363 364 365
        # for clone a new operator
        self.inputs = inputs
        self.outputs = outputs
        self.attrs = attrs
F
fengjiayi 已提交
366 367 368 369 370
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
371
        self.desc.set_type(type)
F
fengjiayi 已提交
372
        proto = OpProtoHolder.instance().get_op_proto(type)
373

Y
Yang Yang(Tony) 已提交
374 375
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
376
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
377 378
                    return True
            return False
Q
QI JUN 已提交
379

Y
Yang Yang(Tony) 已提交
380 381 382 383 384 385 386
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
387 388 389 390
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
391 392
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
393 394 395 396 397
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
                        in_arg_names.append(arg.name)
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
398 399
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
400

Y
Yu Yang 已提交
401
        if outputs is not None:
402 403 404 405 406 407 408 409 410 411 412 413
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
                raise ValueError(
                    "Incorrect setting for output(s) of operator \"%s\". Need: [%s] Given: [%s]"
                    % (type, ", ".join(str(e) for e in need), ", ".join(
                        str(e) for e in given)))

F
fengjiayi 已提交
414
            for out_proto in proto.outputs:
415 416 417 418
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
419 420
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
421 422 423 424 425 426
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
427

Y
Yu Yang 已提交
428
        if attrs is not None:
429 430
            if not isinstance(attrs, dict):
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
431
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
432
                attr_name = attr.name
433
                if (not attr_name in attrs) or (attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
434
                    continue
Y
Yang Yang(Tony) 已提交
435
                if isinstance(attrs[attr_name], Block):
F
Update  
fengjiayi 已提交
436
                    self.desc.set_block_attr(attr_name, attrs[attr_name].desc)
T
typhoonzero 已提交
437 438 439 440
                elif isinstance(attrs[attr_name], core.BlockDesc) or \
                   isinstance(attrs[attr_name], core.ProgramDesc):
                    self.desc.set_serialized_attr(
                        attr_name, attrs[attr_name].serialize_to_string())
Y
Yang Yang(Tony) 已提交
441 442
                else:
                    self.desc.set_attr(attr_name, attrs[attr_name])
Y
Yu Yang 已提交
443

444
        self.desc.check_attrs()
Y
Yang Yang(Tony) 已提交
445
        no_kernel_op_set = {
Y
Yu Yang 已提交
446
            'feed', 'fetch', 'save', 'load', 'recurrent',
T
typhoonzero 已提交
447 448
            'rnn_memory_helper_grad', 'conditional_block', 'while', 'send',
            'recv'
Y
Yang Yang(Tony) 已提交
449
        }
450
        if type not in no_kernel_op_set:
Q
QI JUN 已提交
451
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
452
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
453

Y
Yang Yang(Tony) 已提交
454
    def to_string(self, throw_on_error):
455 456 457 458 459 460 461 462 463
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True

        Returns(str): The debug string.

        """
464 465
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
466 467 468 469
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
470 471 472

    __repr__ = __str__

F
fengjiayi 已提交
473 474 475 476 477
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
478 479 480 481 482 483 484 485 486
        """
        Get input arguments by the input parameter name
        Args:
            name(str): The input parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
487 488 489 490
        return self.desc.input(name)

    @property
    def input_names(self):
491 492 493 494 495
        """
        Get all input parameter names
        Returns(list): return a list of input parameter names

        """
F
fengjiayi 已提交
496 497 498
        return self.desc.input_names()

    def output(self, name):
499 500 501 502 503 504 505 506 507
        """
        Get output arguments by the output parameter name
        Args:
            name(str): The output parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
508 509 510 511
        return self.desc.output(name)

    @property
    def output_names(self):
512 513 514 515 516
        """
        Get all output parameter names
        Returns(list): return a list of output parameter names

        """
F
fengjiayi 已提交
517 518
        return self.desc.output_names()

519 520
    @property
    def idx(self):
521 522 523 524 525 526
        """
        Return the array index of current operator.
        Returns(int): The array index in block.ops array
        Raises:
            ValueError: when the operator is not found.
        """
527 528 529 530 531 532
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
533
    def has_attr(self, name):
534 535 536 537 538 539 540 541
        """
        operator has the attribute with name or not.
        Args:
            name(str): the attribute name

        Returns(bool): True if has this attribute.

        """
F
fengjiayi 已提交
542 543 544
        return self.desc.has_attr(name)

    def attr_type(self, name):
545 546 547 548 549 550 551 552
        """
        Get the type of attribute by attribute name
        Args:
            name(str): the attribute name

        Returns(core.AttrType): the attribute type

        """
F
fengjiayi 已提交
553 554 555 556
        return self.desc.attr_type(name)

    @property
    def attr_names(self):
557 558 559 560 561
        """
        Get all attribute names
        Returns(list): The list of attribute name

        """
F
fengjiayi 已提交
562 563 564
        return self.desc.attr_names()

    def attr(self, name):
565 566 567 568 569 570 571 572 573
        """
        Get attribute by name
        Args:
            name(str): the attribute name

        Returns(bool|int|str|float|list): The attribute value. The return value
            can be any valid attribute type.

        """
F
fengjiayi 已提交
574
        return self.desc.attr(name)
Y
Yu Yang 已提交
575

F
fengjiayi 已提交
576
    def block_attr(self, name):
577 578 579 580 581 582 583 584
        """
        Get the block attribute by name
        Args:
            name(str): the attribute name

        Returns(int): the block index

        """
F
fengjiayi 已提交
585
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
586 587


Y
Yu Yang 已提交
588 589
class Block(object):
    def __init__(self, program, idx):
Y
Yu Yang 已提交
590
        self.desc = program.desc.block(idx)
Y
Yu Yang 已提交
591
        self.vars = dict()  # var_name --> var
Y
Yu Yang 已提交
592
        self.ops = collections.deque()  # operator list
Y
Yu Yang 已提交
593
        self.program = program
T
typhoonzero 已提交
594
        self.removed_vars = dict()
Y
Yu Yang 已提交
595

596
    def __str__(self):
Y
Yang Yang(Tony) 已提交
597 598 599
        return self.to_string(True)

    def to_string(self, throw_on_error):
600 601
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.BlockDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
602
        return _debug_string_(proto, throw_on_error)
603 604 605

    __repr__ = __str__

Y
Yu Yang 已提交
606 607
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
608
        return self.desc.parent
Y
Yu Yang 已提交
609 610 611

    @property
    def idx(self):
Y
Yu Yang 已提交
612
        return self.desc.id
Y
Yu Yang 已提交
613

Q
Qiao Longfei 已提交
614
    def var(self, name):
Y
Yu Yang 已提交
615 616 617 618
        if not isinstance(name, basestring):
            raise TypeError()
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
619
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
620
        return v
Q
Qiao Longfei 已提交
621 622

    def all_parameters(self):
623 624 625 626 627
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
628

Y
Yu Yang 已提交
629
    def create_var(self, *args, **kwargs):
Q
Qiao Longfei 已提交
630
        var = Variable(self, *args, **kwargs)
631 632
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
633
        return var
Y
Yu Yang 已提交
634

Q
Qiao Longfei 已提交
635 636 637
    def has_var(self, name):
        return name in self.vars

Y
Yu Yang 已提交
638 639
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
640
        param = Parameter(global_block, *args, **kwargs)
641 642
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
643
        return param
Y
Yu Yang 已提交
644

Y
Yu Yang 已提交
645
    def append_op(self, *args, **kwargs):
Y
Yu Yang 已提交
646 647
        op_desc = self.desc.append_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
648 649 650
        self.ops.append(op)
        return op

T
typhoonzero 已提交
651 652 653 654 655 656 657 658 659
    def delete_ops(self, ops):
        # remove from cpp
        # FIXME(typhoonzero): remove only the first occuracy.
        try:
            start = list(self.ops).index(ops[0])
            end = list(self.ops).index(ops[-1])
        except Exception, e:
            raise e
        self.desc.remove_op(start, end)
T
wip  
typhoonzero 已提交
660

Y
Yu Yang 已提交
661
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
662 663
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Y
Yu Yang 已提交
664 665 666
        self.ops.appendleft(op)
        return op

Q
Qiao Longfei 已提交
667 668 669 670 671 672 673
    def sync_with_cpp(self):
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

        # sync operators from cpp
674 675 676 677
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.appendleft(op)

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

711 712 713 714
    def copy_param_info_from(self, other):
        """
        Copy the information of parameters from other block
        Args:
715
            other(Block): other block
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
Y
Yu Yang 已提交
739
                clip_attr=p.clip_attr,
740 741 742
                name=v.name)
            self.vars[new_p.name] = new_p

Y
Yu Yang 已提交
743 744

class Program(object):
745 746
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
747 748
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
749
        self._seed = 0
Y
Yu Yang 已提交
750

751
    def __str__(self):
Y
Yang Yang(Tony) 已提交
752 753 754
        return self.to_string(True)

    def to_string(self, throw_on_error):
755 756
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.ProgramDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
757
        return _debug_string_(proto, throw_on_error)
758

Y
Yu Yang 已提交
759 760 761 762 763
    def clone(self):
        p = Program()
        p.desc = core.ProgramDesc(self.desc)
        p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
        p.sync_with_cpp()
764
        p.copy_param_info_from(self)
Y
Yu Yang 已提交
765
        return p
766

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
    def prune(self, targets):
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    t = t.op
                else:
                    raise ValueError(
                        "All targets of prune() can only be Variable or Operator."
                    )

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

787 788 789 790 791 792 793
    def inference_optimize(self):
        res = Program()
        res.desc = core.inference_optimize(self.desc)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

794 795 796 797
    @staticmethod
    def parse_from_string(binary_str):
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
798
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
799 800
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
801

D
dzhwinter 已提交
802 803 804 805 806 807 808 809 810 811
    @property
    def random_seed(self):
        return self._seed

    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
812 813
    def __repr__(self):
        return str(self)
814

Y
Yu Yang 已提交
815 816 817
    def global_block(self):
        return self.blocks[0]

Q
Qiao Longfei 已提交
818 819 820
    def block(self, index):
        return self.blocks[index]

Y
Yu Yang 已提交
821 822 823
    def current_block(self):
        return self.blocks[self.current_block_idx]

F
fengjiayi 已提交
824
    def append_backward(self, target, no_grad_set=None):
Q
Qiao Longfei 已提交
825 826 827
        """
        return map(param_name -> (grad_name, block_index, op_index))
        """
Q
Qiao Longfei 已提交
828
        assert isinstance(target, Variable)
F
fengjiayi 已提交
829 830
        if no_grad_set is None:
            no_grad_set = set()
Y
Yang Yang(Tony) 已提交
831 832 833 834 835 836 837 838
        try:
            param_to_grad_info = self.desc.append_backward(target.desc,
                                                           no_grad_set)
        except Exception as e:
            raise core.EnforceNotMet(
                str(e) + "\nCurrent protobuf is\n{0}".format(
                    self.to_string(False)))

Q
Qiao Longfei 已提交
839 840 841
        self.sync_with_cpp()
        return param_to_grad_info

Y
Yu Yang 已提交
842 843
    def create_block(self):
        new_block_idx = len(self.blocks)
Y
Yu Yang 已提交
844
        self.desc.append_block(self.current_block().desc)
Y
Yu Yang 已提交
845 846 847 848 849 850 851
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
852 853 854 855 856 857
    def sync_with_cpp(self):
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

858 859
    def copy_param_info_from(self, other):
        """
860
        Copy the information of parameters from other program.
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

876 877 878 879 880
    def list_vars(self):
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
881

Y
Yu Yang 已提交
882 883 884 885 886 887 888 889 890 891 892
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
893 894 895

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
896 897 898 899
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

900 901
        self.regularizer = kwargs.get('regularizer', None)

Y
Yu Yang 已提交
902 903
        self.clip_attr = kwargs.get('clip_attr', None)

Y
Yu Yang 已提交
904

Y
Yu Yang 已提交
905
# program is a global instance.
Y
Yu Yang 已提交
906 907
_main_program_ = Program()
_startup_program_ = Program()
908

909

910
def default_startup_program():
Y
Yu Yang 已提交
911 912 913
    """
    Get default startup program. In startup program, Paddle will initialize
    parameters, initialize nccl handle, etc.
914

Y
Yu Yang 已提交
915 916 917
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
918
    return _startup_program_
919

920

921
def default_main_program():
Y
Yu Yang 已提交
922 923
    """
    Get default main program. The main program is used for training or testing.
924

Y
Yu Yang 已提交
925 926 927
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
928
    return _main_program_
Y
Yu Yang 已提交
929 930 931 932 933


def switch_main_program(program):
    """
    Switch the main program to a new program.
934

Y
Yu Yang 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
949
    Switch the startup program to a new program
Y
Yu Yang 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
    Switch program with `with` statement
966

Y
Yu Yang 已提交
967 968 969 970
    Examples:
        >>> with program_guard(Program()):
        >>>   data = fluid.layers.data(...)
        >>>   hidden = fluid.layers.fc(...)
971

Y
Yu Yang 已提交
972 973
    Args:
        main_program(Program): New main program inside `with` statement
974
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
            None means do not change startup program.

    Returns:
        None
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)