auto_cast.py 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager, wrap_decorator
from paddle.fluid import core
import contextlib
J
Jiabin Yang 已提交
19
from paddle.fluid.framework import Variable, _non_static_mode, OpProtoHolder, Parameter, _dygraph_tracer, dygraph_only, set_flags, get_flags
20 21
import warnings
import copy
22 23 24 25
import functools
import paddle
import operator
import types
26

L
Leo Chen 已提交
27 28
AMP_LEVEL = core.AmpLevel

29
__all__ = ['amp_guard', 'amp_decorate']
30 31 32 33 34 35

# The set of ops that support fp16 calculation and are considered numerically-
# safe and performance-critical. These ops are always converted to fp16.
WHITE_LIST = {
    'conv2d',
    'matmul',
L
Leo Chen 已提交
36
    'matmul_v2',
37
    'mul',
C
cc 已提交
38 39
    'fake_quantize_dequantize_abs_max',
    'fake_quantize_dequantize_moving_average_abs_max',
40 41 42 43 44 45 46 47 48 49 50 51 52 53
}

# The set of ops that support fp16 calculation and are considered numerically-
# dangerous and whose effects may also be observed in downstream ops.
BLACK_LIST = {
    'exp',
    'square',
    'log',
    'mean',
    'sum',
    'cos_sim',
    'softmax',
    'softmax_with_cross_entropy',
    'sigmoid_cross_entropy_with_logits',
54
    'c_softmax_with_cross_entropy',
55 56
    'cross_entropy',
    'cross_entropy2',
57 58
    # default fp32 can avoid return inf when the sum value large than 65504
    'reduce_sum',
59 60 61 62 63 64
    # FP16 performance of grad op is worse than that of FP32. Use FP32 by default.
    'linear_interp_v2',
    'nearest_interp_v2',
    'bilinear_interp_v2',
    'bicubic_interp_v2',
    'trilinear_interp_v2',
65 66 67 68 69 70 71 72 73 74 75 76 77 78
}

AMP_RELATED_FLAGS = [
    'FLAGS_cudnn_exhaustive_search',
    'FLAGS_conv_workspace_size_limit',
    'FLAGS_cudnn_batchnorm_spatial_persistent',
]

AMP_RELATED_FLAGS_SETTING = {
    'FLAGS_cudnn_exhaustive_search': 1,
    'FLAGS_conv_workspace_size_limit': 1000,
    'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
}

79
PURE_FP16_WHITE_LIST = {' '}
80
PURE_FP16_BLACK_LIST = {
81 82 83 84 85 86 87 88 89 90
    'lookup_table',
    'lookup_table_v2',
    'scatter',
    'scatter_grad',
    # FP16 performance of grad op is worse than that of FP32. Use FP32 by default.
    'linear_interp_v2',
    'nearest_interp_v2',
    'bilinear_interp_v2',
    'bicubic_interp_v2',
    'trilinear_interp_v2',
91
}
92

93
BF16_WHITE_LIST = {'conv2d', 'matmul_v2'}
94 95
BF16_BLACK_LIST = {' '}

L
Leo Chen 已提交
96 97 98 99 100 101 102
_g_amp_state_ = None


def amp_state():
    global _g_amp_state_
    return _g_amp_state_

103 104 105

#NOTE(zhiqiu): similar as paddle.fluid.contrib.mixed_precision.fp16_lists.AutoMixedPrecisionLists._update_list
# The reason why not use AutoMixedPrecisionLists is that custom_black_varnames is not suitable for imperative mode.
106 107 108 109
def _update_list(custom_white_list,
                 custom_black_list,
                 level='O1',
                 dtype='float16'):
110 111 112
    """
    Update black and white list according to users' custom list.
    """
113 114 115 116 117 118 119
    if dtype == 'float16':
        if level == 'O1':
            _white_list = copy.copy(WHITE_LIST)
            _black_list = copy.copy(BLACK_LIST)
        else:
            _white_list = copy.copy(PURE_FP16_WHITE_LIST)
            _black_list = copy.copy(PURE_FP16_BLACK_LIST)
120
    else:
121 122
        _white_list = copy.copy(BF16_WHITE_LIST)
        _black_list = copy.copy(BF16_BLACK_LIST)
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    if custom_white_list and custom_black_list:
        for op_name in custom_white_list:
            if op_name in custom_black_list:
                raise ValueError("Custom white list overlap "
                                 "custom black list")
    if custom_white_list:
        for op_name in custom_white_list:
            if op_name in _black_list:
                _black_list.remove(op_name)
            _white_list.add(op_name)
    if custom_black_list:
        for op_name in custom_black_list:
            if op_name in _white_list:
                _white_list.remove(op_name)
            _black_list.add(op_name)
    return _white_list, _black_list


141 142 143 144 145 146
def _in_amp_guard():
    """
    Judge whether current code block is in `amp_guard` context.
    """
    tracer = _dygraph_tracer()
    if tracer:
L
Leo Chen 已提交
147
        if tracer._amp_level == core.AmpLevel.O1:
148 149 150
            return True
        else:
            return False
151 152 153 154
    else:
        return False


155 156 157 158 159
def _in_pure_fp16_guard():
    tracer = _dygraph_tracer()
    return tracer and tracer._amp_level == core.AmpLevel.O2


160 161 162 163 164 165 166 167 168 169 170 171 172 173
def _is_gpu_float16_supported():
    """
    Judge whether current gpu support float16 amp.
    """
    prop = paddle.device.cuda.get_device_capability()
    return prop[0] >= 7


def _is_gpu_bfloat16_supported():
    """
    Judge whether current gpu support bfloat16 amp.
    """
    prop = paddle.device.cuda.get_device_capability()
    cuda_version = paddle.version.cuda()
174
    if cuda_version is not None and cuda_version != 'False':
175 176 177 178 179 180
        cuda_version_check = int(cuda_version.split('.')[0]) >= 11
    else:
        cuda_version_check = False
    return prop[0] >= 8 and cuda_version_check


181
@dygraph_only
182
def pure_fp16_initialize(models):
183 184 185
    for idx in range(len(models)):
        for layer in models[idx].sublayers(include_self=True):
            layer._casted_by_pure_fp16 = True
186
            if (layer._dtype == 'float16') or isinstance(
187 188
                    layer, (paddle.nn.BatchNorm, paddle.nn.BatchNorm1D,
                            paddle.nn.BatchNorm2D, paddle.nn.BatchNorm3D,
189
                            paddle.nn.LayerNorm, paddle.nn.SyncBatchNorm)):
190
                continue
191 192 193 194
            if isinstance(layer, (paddle.incubate.nn.FusedFeedForward,
                                  paddle.incubate.nn.FusedMultiHeadAttention)):
                layer._amp_decorate(dtype='float16')
                continue
195 196 197
            layer._to_impl(dtype='float16',
                           include_sublayers=False,
                           floating_only=True)
198
    return models
199 200 201 202 203 204


def check_models(models):
    for model in models:
        if not isinstance(model, paddle.nn.Layer):
            raise RuntimeError(
205 206
                "Current train mode is pure fp16, models should be paddle.nn.Layer, but receive {}."
                .format(type(model)))
207 208 209 210
        if isinstance(model, paddle.DataParallel):
            raise RuntimeError(
                "For distributed AMP training, you should first use paddle.amp.decorate() to decotate origin model, and then call paddle.DataParallel get distributed model."
            )
211 212 213 214


def check_optimizers(optimizers):
    for optimizer in optimizers:
215 216 217
        if not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
218
            raise RuntimeError(
219 220
                "Current train mode is pure fp16, optimizers should be paddle.optimizer.Optimizer or paddle.fluid.optimizer.Optimizer, but receive {}."
                .format(type(optimizer)))
221 222


223 224
@signature_safe_contextmanager
@dygraph_only
225 226 227
def amp_guard(enable=True,
              custom_white_list=None,
              custom_black_list=None,
228 229
              level='O1',
              dtype='float16'):
230 231 232
    """
    :api_attr: imperative

233
    Create a context which enables auto-mixed-precision(AMP) of operators executed in dynamic graph mode.
234 235 236
    If enabled, the input data type (float32 or float16) of each operator is decided 
    by autocast algorithm for better performance. 
    
237 238
    Commonly, it is used together with `GradScaler` to achieve Auto-Mixed-Precision in 
    imperative mode. It is used together with `decorator` to achieve Pure fp16 in imperative mode.
239 240 241

    Args:
        enable(bool, optional): Enable auto-mixed-precision or not. Default is True.
242 243 244 245 246 247 248 249
        custom_white_list(set|list|tuple, optional): The custom white_list. It's the set of ops that support
             fp16 calculation and are considered numerically-safe and performance-critical. These ops 
             will be converted to fp16.
        custom_black_list(set|list|tuple, optional): The custom black_list. The set of ops that support fp16
             calculation and are considered numerically-dangerous and whose effects may also be 
             observed in downstream ops. These ops will not be converted to fp16.
        level(str, optional): Auto mixed precision level. Accepted values are "O1" and "O2": O1 represent mixed precision, the input data type of each operator will be casted by white_list and black_list; 
             O2 represent Pure fp16, all operators parameters and input data will be casted to fp16, except operators in black_list, don't support fp16 kernel and batchnorm. Default is O1(amp)
250
        dtype(str, optional): Whether to use 'float16' or 'bfloat16'. Default is 'float16'.
251

252 253 254 255 256 257
        
    Examples:

     .. code-block:: python

        import numpy as np
258
        import paddle
259 260

        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
261 262 263 264
        with paddle.fluid.dygraph.guard():
            conv2d = paddle.fluid.dygraph.Conv2D(3, 2, 3)
            data = paddle.fluid.dygraph.to_variable(data)
            with paddle.fluid.dygraph.amp_guard():
265 266
                conv = conv2d(data)
                print(conv.dtype) # FP16
267
            with paddle.fluid.dygraph.amp_guard(enable=False):
268 269 270 271
                conv = conv2d(data)
                print(conv.dtype) # FP32

    """
L
Leo Chen 已提交
272 273 274 275 276
    amp_state = locals()
    global _g_amp_state_
    original_state = _g_amp_state_
    _g_amp_state_ = amp_state

277 278
    # check amp_level: O0-O2
    level = level.upper()
L
Leo Chen 已提交
279
    if not (level in ['O0', 'O1', 'O2']):
280
        raise ValueError(
281
            "level should be O0, O1 or O2. O0 represents fp32 train mode, O1 represents AMP train mode, O2 represents pure fp16/bf16 train mode."
282 283
        )

284 285 286 287 288 289
    # check amp_dtype: float16 or bfloat16
    dtype = dtype.lower()
    if not (dtype in ['float16', 'bfloat16']):
        raise ValueError("dtype should be 'float16' or 'bfloat16'.")

    # check tracer
290 291 292 293 294
    tracer = _dygraph_tracer()
    if not tracer:
        raise ValueError(
            "current_tracer is None, maybe it is not in imperative mode.")

295
    # check device_type:
Q
qipengh 已提交
296
    # NOTE: Now, amp only support gpu for float16 and bfloat16, xpu for float16, mlu for float16, npu for float16.
297
    # Maybe we will support cpu for bfloat16.
298 299 300 301 302
    if enable and not (tracer._expected_place.is_gpu_place()
                       or tracer._expected_place.is_xpu_place()
                       or tracer._expected_place.is_mlu_place()
                       or tracer._expected_place.is_npu_place()
                       or tracer._expected_place.is_custom_place()):
303
        warnings.warn(
304
            'amp_guard can only be enabled on CUDAPlace, XPUPlace, MLUPlace, NPUPlace, and CustomPlace, current place is %s, so it makes no effect.'
305 306
            % tracer._expected_place)
        enable = False
F
furnace 已提交
307 308 309 310
    # For npu:
    if tracer._expected_place.is_npu_place() and (dtype == 'bfloat16'):
        warnings.warn('NPUPlace only support float16 amp.')
        enable = False
311 312 313 314
    # For xpu:
    if tracer._expected_place.is_xpu_place() and (dtype == 'bfloat16'):
        warnings.warn('XPUPlace only support float16 amp.')
        enable = False
Q
qipengh 已提交
315 316 317 318
    # For mlu:
    if tracer._expected_place.is_mlu_place() and (dtype == 'bfloat16'):
        warnings.warn('MLUPlace only support float16 amp.')
        enable = False
319 320 321 322
    # For custom device:
    if tracer._expected_place.is_custom_place() and (dtype == 'bfloat16'):
        warnings.warn('CustomPlace only support float16 amp.')
        enable = False
323 324
    # For gpu float16: Compute Capability should >= 7.
    # For gpu bfloat16: Compute Capability should >= 8 & CUDA Version should >= 11.
Z
zhangbo9674 已提交
325
    if tracer._expected_place.is_gpu_place():
326 327
        if (dtype == 'float16') and not _is_gpu_float16_supported():
            prop = paddle.device.cuda.get_device_capability()
Z
zhangbo9674 已提交
328
            warnings.warn(
329
                "For float16, amp only support NVIDIA GPU with Compute Capability 7.0 or higher, current GPU is: %s, with Compute Capability: %d.%d."
Z
zhangbo9674 已提交
330
                % (paddle.device.cuda.get_device_name(), prop[0], prop[1]))
331 332 333 334 335 336 337 338 339
        elif (dtype == 'bfloat16') and not _is_gpu_bfloat16_supported():
            prop = paddle.device.cuda.get_device_capability()
            cuda_version = paddle.version.cuda()
            warnings.warn(
                "For bfloat16, amp only support NVIDIA GPU with Compute Capability 8.0 or higher and CUDA Version 11.0 or higher, current GPU is: %s, with Compute Capability: %d.%d, current CUDA Version is: %s."
                % (paddle.device.cuda.get_device_name(), prop[0], prop[1],
                   cuda_version))

    amp_dtype = dtype
Z
zhangbo9674 已提交
340

341
    if level == 'O1':
L
Leo Chen 已提交
342
        amp_level = AMP_LEVEL.O1
343 344 345 346 347 348 349
        if dtype == 'float16':
            _white_list = WHITE_LIST
            _black_list = BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST

L
Leo Chen 已提交
350
    elif level == 'O2':
L
Leo Chen 已提交
351
        amp_level = AMP_LEVEL.O2
352 353 354 355 356 357
        if dtype == 'float16':
            _white_list = PURE_FP16_WHITE_LIST
            _black_list = PURE_FP16_BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST
L
Leo Chen 已提交
358 359
    elif level == 'O0':
        amp_level = AMP_LEVEL.O0
360 361 362 363 364 365
        if dtype == 'float16':
            _white_list = WHITE_LIST
            _black_list = BLACK_LIST
        elif dtype == 'bfloat16':
            _white_list = BF16_WHITE_LIST
            _black_list = BF16_BLACK_LIST
366

367 368
    if custom_white_list or custom_black_list:
        _white_list, _black_list = _update_list(custom_white_list,
369
                                                custom_black_list, level, dtype)
370 371

    if not enable:
L
Leo Chen 已提交
372
        amp_level = AMP_LEVEL.O0
373
        amp_dtype = "float32"
374 375 376

    if tracer:
        # enable auto_cast
377 378 379
        original_amp_level = tracer._amp_level
        tracer._amp_level = amp_level

380 381 382 383 384 385 386 387 388 389 390 391
        # set amp op list
        original_white_list, original_black_list = tracer._get_amp_op_list()
        tracer._set_amp_op_list(_white_list, _black_list)

        # TODO(zhiqiu) set amp related flags automatically in this guard
        # Currently, if FLAGS_cudnn_batchnorm_spatial_persistent is set True in amp_guard,
        # batch_norm can run in fast mode, but batch_norm_grad can not if backward if not executed insise amp_guard.
        # So, users need to set related flags manually.

        # original_flags = get_flags(AMP_RELATED_FLAGS)
        # set_flags(AMP_RELATED_FLAGS_SETTING)

392 393 394 395
        # set amp dtype
        original_amp_dtype = tracer._amp_dtype
        tracer._amp_dtype = amp_dtype

396 397 398 399 400
    # restore status
    try:
        yield
    finally:
        if tracer:
L
Leo Chen 已提交
401
            _g_amp_state_ = original_state
402
            tracer._amp_level = original_amp_level
403 404
            tracer._set_amp_op_list(original_white_list, original_black_list)
            # set_flags(original_flags)
405
            tracer._amp_dtype = original_amp_dtype
406 407 408


class StateDictHook(object):
409

410 411 412 413 414 415
    def __init__(self, save_dtype):
        self._save_dtype = save_dtype

    def __call__(self, state_dict):
        for key in state_dict:
            param = state_dict[key]
416
            with paddle.fluid.dygraph.guard():
417 418 419 420
                if paddle.is_floating_point(param):
                    param_applied = paddle.cast(param, self._save_dtype)
                    param_applied.name = param.name
                    state_dict[key] = param_applied
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452


@dygraph_only
def amp_decorate(models,
                 optimizers=None,
                 level='O1',
                 master_weight=None,
                 save_dtype=None):
    """
    Decorate models and optimizers for auto-mixed-precision. When level is O1(amp), the decorate will do nothing. 
    When level is O2(pure fp16), the decorate will cast all parameters of models to FP16, except BatchNorm and LayerNorm.
    
    Commonly, it is used together with `amp_guard` to achieve Pure fp16 in imperative mode.

    Args:
        models(Layer|list of Layer, optional): The defined models by user, models must be either a single model or a list of models. Default is None.
        optimizers(Optimizer|list of Optimizer, optional): The defined optimizers by user, optimizers must be either a single optimizer or a list of optimizers. Default is None.
        level(str, optional): Auto mixed precision level. Accepted values are "O1" and "O2": O1 represent mixed precision, the decorator will do nothing; 
             O2 represent Pure fp16, the decorator will cast all parameters of models to FP16, except BatchNorm and LayerNorm. Default is O1(amp)
        master_weight(bool, optinal): For level='O2', whether to use multi-precision during weight updating. If master_weight is None, in O2 level optimizer will use multi-precision. Default is None.
        save_dtype(float, optional): The save model parameter dtype when use `paddle.save` or `paddle.jit.save`,it should be float16, float32, float64 or None.
             The save_dtype will not change model parameters dtype, it just change the state_dict dtype. When save_dtype is None, the save dtype is same as model dtype. Default is None.

    Examples:

     .. code-block:: python   
        
        # required: gpu
        # Demo1: single model and optimizer:
        import paddle

        model = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
453
        optimizer = paddle.optimizer.SGD(parameters=model.parameters())
454

455
        model, optimizer = paddle.fluid.dygraph.amp_decorate(models=model, optimizers=optimizer, level='O2')
456 457 458

        data = paddle.rand([10, 3, 32, 32])

459
        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
460 461 462 463 464 465 466 467
            output = model(data)
            print(output.dtype) # FP16

        # required: gpu
        # Demo2: multi models and optimizers:
        model2 = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
        optimizer2 = paddle.optimizer.Adam(parameters=model2.parameters())

468
        models, optimizers = paddle.fluid.dygraph.amp_decorate(models=[model, model2], optimizers=[optimizer, optimizer2], level='O2')
469 470 471

        data = paddle.rand([10, 3, 32, 32])

472
        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
473 474 475 476
            output = models[0](data)
            output2 = models[1](data)
            print(output.dtype) # FP16
            print(output2.dtype) # FP16
477 478 479 480 481 482 483 484 485 486 487 488 489
        
        # required: gpu
        # Demo3: optimizers is None:
        model3 = paddle.nn.Conv2D(3, 2, 3, bias_attr=False)
        optimizer3 = paddle.optimizer.Adam(parameters=model2.parameters())

        model = paddle.fluid.dygraph.amp_decorate(models=model3, level='O2')

        data = paddle.rand([10, 3, 32, 32])

        with paddle.fluid.dygraph.amp_guard(enable=True, custom_white_list=None, custom_black_list=None, level='O2'):
            output = model(data)
            print(output.dtype) # FP16
490 491 492 493 494 495 496
    """
    if not (level in ['O1', 'O2']):
        raise ValueError(
            "level should be O1 or O2, O1 represent AMP train mode, O2 represent Pure fp16 train mode."
        )

    if level == 'O1':
497 498 499 500
        if optimizers is None:
            return models
        else:
            return models, optimizers
501 502 503 504 505 506 507 508 509 510 511 512 513

    models_is_list = False
    if isinstance(models, paddle.nn.Layer):
        models_is_list = False
        models = [models]
        check_models(models)
    elif isinstance(models, list):
        check_models(models)
        models_is_list = True
    else:
        raise TypeError(
            "models must be either a single model or a list of models.")

514
    models = pure_fp16_initialize(models=models)
515

516 517 518
    if optimizers is not None:
        # check optimizers
        optimizers_is_list = False
519 520 521
        if isinstance(
                optimizers,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
522 523 524 525 526 527 528 529 530 531
            optimizers_is_list = False
            optimizers = [optimizers]
            check_optimizers(optimizers)
        elif isinstance(optimizers, list):
            check_optimizers(optimizers)
            optimizers_is_list = True
        else:
            raise TypeError(
                "optimizers must be either a single optimizer or a list of optimizers."
            )
532
        # supprot master_weight
533 534 535 536 537 538
        for idx_opt in range(len(optimizers)):
            if hasattr(optimizers[idx_opt], '_multi_precision'):
                if master_weight is False:
                    optimizers[idx_opt]._multi_precision = False
                else:
                    optimizers[idx_opt]._multi_precision = True
539 540 541 542 543 544 545 546 547 548 549

    if save_dtype is not None:
        if not (save_dtype in ['float16', 'float32', 'float64']):
            raise ValueError(
                "save_dtype can only be float16 float32 or float64, but your input save_dtype is %s."
                % save_dtype)
        for idx in range(len(models)):
            for layer in models[idx].sublayers(include_self=True):
                layer.register_state_dict_hook(StateDictHook(save_dtype))

    if models_is_list:
550 551 552 553 554
        if optimizers is not None:
            if optimizers_is_list:
                return models, optimizers
            else:
                return models, optimizers[0]
555
        else:
556
            return models
557
    else:
558 559 560 561 562
        if optimizers is not None:
            if optimizers_is_list:
                return models[0], optimizers
            else:
                return models[0], optimizers[0]
563
        else:
564
            return models[0]