parallel.py 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22
import paddle
23 24 25 26 27

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
L
lilong12 已提交
28
from paddle.fluid.framework import in_dygraph_mode
29 30
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
31
from paddle.distributed.fleet.launch_utils import check_backend
32
from paddle.fluid.dygraph.parallel import ParallelEnv
33
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
34
from paddle.distributed import collective
L
lilong12 已提交
35 36 37
from paddle.distributed.collective import _set_group_map
from paddle.distributed.collective import _set_group_map_by_name
from paddle.distributed.collective import _get_group_map_by_name
38 39 40
from paddle.distributed.collective import _group_map_by_name
from paddle.distributed.collective import _default_group_name
from paddle.distributed.collective import _valid_backend_list
L
lilong12 已提交
41 42
from paddle.distributed.collective import _set_default_backend
from paddle.distributed.collective import _set_default_store
43 44
from paddle.distributed.collective import _new_process_group_impl
from paddle.distributed.collective import Group
45
from paddle.distributed.collective import _set_group_map_backend
46
from paddle.distributed.communication.group import _add_new_group
47

48
__all__ = []
49 50 51

ParallelStrategy = core.ParallelStrategy

52
# NOTE(chenweihang): Maintain a global parallel env to avoid
53 54 55 56 57 58 59 60 61 62
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

63

64
def _start_kv_server(port, http_server_d, size):
65
    from paddle.distributed.fleet.utils.http_server import KVServer
66
    http_server = KVServer(int(port), size=size)
67
    http_server.start()
68
    wait_seconds = 3
L
lilong12 已提交
69
    while http_server_d.get("running", False) or not http_server.should_stop():
70 71 72 73
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
74 75
def _is_cpuonly(backend):
    check_backend(backend)
76 77 78 79
    if (backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl'] and
        (core.is_compiled_with_cuda() or core.is_compiled_with_xpu()
         or core.is_compiled_with_npu()
         or core.is_compiled_with_mlu())) or backend is 'xccl':
80

81 82 83 84 85 86
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
87 88 89 90 91 92 93 94
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
        raise ValueError("paddle.distributed initialize error, "
                         "environment variable %s is needed, but not set." %
                         var_name)


X
xiongkun 已提交
95
def init_parallel_env():
96
    """
97
    Initialize parallel training environment in dynamic graph mode.
98

99
    .. note::
100
        Now initialize both `NCCL` and `GLOO` contexts for communication.
101

102 103 104 105 106
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

107 108 109 110 111
    Returns:
        None
        
    Examples:
        .. code-block:: python
112
            # required: gpu
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
128
                # 1. initialize parallel environment
129 130
                dist.init_parallel_env()

131
                # 2. create data parallel layer & optimizer
132 133 134 135 136 137 138
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

139
                # 3. run layer
140 141 142 143 144 145 146 147 148 149 150 151 152 153
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

154 155 156 157 158 159 160 161 162 163 164
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
165
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
166
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
167 168
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
169 170 171 172
    # 1. gpu xpu check, must be gpu or xpu,
    if not (is_cpu_only or core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu() or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()):
173
        raise NotImplementedError(
174
            "If you want to use CPU-only version, please use 'gloo' as backend")
175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    if backend == "xccl":
        FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
            parallel_env.device_type)
        _check_var_exists(FLAGS_selected_custom_devices)
    else:
        if not is_cpu_only and core.is_compiled_with_cuda():
            _check_var_exists("FLAGS_selected_gpus")
            backend = "nccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_xpu():
            _check_var_exists('FLAGS_selected_xpus')
            backend = "bkcl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_npu():
            _check_var_exists('FLAGS_selected_npus')
            backend = "hccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_mlu():
            _check_var_exists('FLAGS_selected_mlus')
            backend = "cncl" if backend == "auto" else backend
193

194 195 196 197 198
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

199 200 201 202 203 204
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
205 206 207 208
    if backend == "xccl":
        place = core.CustomPlace(parallel_env.device_type,
                                 parallel_env.device_id)
    elif is_cpu_only:
209 210 211 212 213 214 215 216 217 218 219 220 221
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
L
lilong12 已提交
222 223 224 225
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
226 227 228 229 230 231 232 233
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
            "required to create a process group.")
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
234 235
        endpoints = ":".join([master_addr, master_port
                              ]) if master_addr and master_port else None
236
        if endpoints is None:
237 238 239 240 241 242 243 244 245 246 247
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
            "with paddle.distributed.run module.")
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
248
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
249 250 251 252
        default_store = core.TCPStore(master_addr,
                                      master_port,
                                      is_master,
                                      world_size,
G
gongweibao 已提交
253
                                      timeout=stop_check_timeout)
L
lilong12 已提交
254
        _set_default_store(default_store)
255 256 257 258 259 260
        pg = _new_process_group_impl(backend,
                                     default_store,
                                     rank,
                                     world_size,
                                     _default_group_name,
                                     pg_options=None)
261
        ranks = list(range(world_size))
262
        group = Group(rank, 0, ranks, pg=pg, name=_default_group_name)
L
lilong12 已提交
263 264
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
265
        _set_group_map_backend(group, backend)
266
        _add_new_group(group)
267
        parallel_helper._set_parallel_ctx(True)
268 269

        paddle.distributed.barrier(group=group)
270 271
        return group

K
kuizhiqing 已提交
272
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
273
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
274
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
275
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
276 277 278 279 280 281 282 283
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
284 285
            if backend == "heter":
                size = {'_worker': len(node_num)}
286 287
            http_server = Process(target=_start_kv_server,
                                  args=(int(ep_rank_0[1]), http_server_d, size))
L
lilong12 已提交
288 289 290
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
291 292

    # 4. init NCCL ParallelStrategy
293
    strategy = ParallelStrategy()
294 295
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
296 297 298 299
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
300
    strategy.nrings = parallel_env.nrings
301

K
kuizhiqing 已提交
302
    # init nccl or hccl or bkcl or heter context
303 304 305
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
            core.GLOOParallelContext(strategy, place))
K
kuizhiqing 已提交
306 307 308
    elif (backend == "heter"):
        parallel_helper._set_parallel_ctx(
            core.HeterParallelContext(strategy, parallel_env.device_id))
309
    elif core.is_compiled_with_cuda():
310 311 312 313 314
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
315 316 317
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
            core.HCCLParallelContext(strategy, place))
318 319 320
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
            core.CNCLParallelContext(strategy, place))
321

K
kuizhiqing 已提交
322 323 324 325 326
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
327

328
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
329

330 331 332 333
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
334
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
335
        # compare to init_gloo, we don't need to
336 337 338
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
339

340 341
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
356
    return group
357

358

L
LiYuRio 已提交
359
def get_rank(group=None):
360
    """
L
LiYuRio 已提交
361 362
    Returns the rank of current trainer in the given group, ranks are consecutive integers in [0, ``world_size``).
    If none of the group is given, the global group will be used as default.
363

L
LiYuRio 已提交
364 365
    Args:
        group (Group, optional): The communication group you want to get rank of current trainer, use global group as default if group is None.
366 367

    Returns:
L
LiYuRio 已提交
368 369 370 371
        (int) The rank of current trainer in the given group. Return -1 if the process is not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
372 373 374 375

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
376
            # Execute this script using distributed launch with one card configs.
377 378 379
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
380
            dist.init_parallel_env()
381 382 383
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
L
LiYuRio 已提交
384 385 386 387
    if in_dygraph_mode() and group:
        return group.rank

    assert group is None, "Only support group argument in eager mode."
388
    return _get_global_parallel_env().rank
389 390


L
LiYuRio 已提交
391
def get_world_size(group=None):
392
    """
L
LiYuRio 已提交
393 394
    Returns the number of trainers (number of processes participating in current job) in the given group.
    If none of the group is given, the global group will be used as default.
395

L
LiYuRio 已提交
396 397
    Args:
        group (Group, optional): The communication group you want to check world size, use global group as default if group is None.
398 399

    Returns:
L
LiYuRio 已提交
400 401 402 403
        (int) The number of trainers in the given group. Return -1 if the process if not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
404 405 406 407

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
408
            # Execute this script using distributed launch with one card configs.
409 410 411
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
412
            dist.init_parallel_env()
413
            print("The world_size is %d" % dist.get_world_size())
L
LiYuRio 已提交
414
            # The world_size is 1
415
    """
L
LiYuRio 已提交
416 417 418 419
    if in_dygraph_mode() and group:
        return group.world_size

    assert group is None, "Only support group argument in eager mode."
420
    return _get_global_parallel_env().world_size