# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except jin compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import six import warnings from multiprocessing import Process # noqa: F401 from multiprocessing import Manager # noqa: F401 import time import sys import paddle from paddle import compat as cpt # deprecated module import from paddle.fluid import core from paddle.fluid.framework import in_dygraph_mode from paddle.fluid.framework import _set_expected_place from paddle.fluid.dygraph import parallel_helper from paddle.distributed.fleet.launch_utils import check_backend from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.distributed.fleet.base.private_helper_function import wait_server_ready # noqa: F401 from paddle.distributed import collective from paddle.distributed.collective import _set_group_map from paddle.distributed.collective import _set_group_map_by_name from paddle.distributed.collective import _get_group_map_by_name from paddle.distributed.collective import _group_map_by_name from paddle.distributed.collective import _default_group_name from paddle.distributed.collective import _valid_backend_list from paddle.distributed.collective import _set_default_backend from paddle.distributed.collective import _set_default_store from paddle.distributed.collective import _new_process_group_impl from paddle.distributed.collective import Group from paddle.distributed.collective import _set_group_map_backend from paddle.distributed.communication.group import _add_new_group __all__ = [] ParallelStrategy = core.ParallelStrategy # NOTE(chenweihang): Maintain a global parallel env to avoid # initializing ParallelEnv every time and improve performance _global_parallel_env = None def _get_global_parallel_env(): global _global_parallel_env if _global_parallel_env is None: _global_parallel_env = ParallelEnv() return _global_parallel_env def _start_kv_server(port, http_server_d, size): from paddle.distributed.fleet.utils.http_server import KVServer http_server = KVServer(int(port), size=size) http_server.start() wait_seconds = 3 while http_server_d.get("running", False) or not http_server.should_stop(): time.sleep(wait_seconds) http_server.stop() def _is_cpuonly(backend): check_backend(backend) if (backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl'] and (core.is_compiled_with_cuda() or core.is_compiled_with_xpu() or core.is_compiled_with_npu() or core.is_compiled_with_mlu())) or backend is 'xccl': # passes 'auto' and can use cuda or xpu, use the default logics. so return False return False else: return True def _check_var_exists(var_name): var = os.environ.get(var_name, None) if var is None: raise ValueError("paddle.distributed initialize error, " "environment variable %s is needed, but not set." % var_name) def init_parallel_env(): """ Initialize parallel training environment in dynamic graph mode. .. note:: Now initialize both `NCCL` and `GLOO` contexts for communication. Args: backend (string): A string represents the backend used by DataParallel, should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect). The auto detection prefer 'nccl', 'bkcl' than 'gloo'. Returns: None Examples: .. code-block:: python # required: gpu import paddle import paddle.nn as nn import paddle.optimizer as opt import paddle.distributed as dist class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) def train(): # 1. initialize parallel environment dist.init_parallel_env() # 2. create data parallel layer & optimizer layer = LinearNet() dp_layer = paddle.DataParallel(layer) loss_fn = nn.MSELoss() adam = opt.Adam( learning_rate=0.001, parameters=dp_layer.parameters()) # 3. run layer inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) loss.backward() adam.step() adam.clear_grad() if __name__ == '__main__': dist.spawn(train) """ # 0. get env & check world size global _global_parallel_env # when call init_parallel_env, need update `_global_parallel_env` _global_parallel_env = ParallelEnv() parallel_env = _global_parallel_env # if not parallel, `init_parallel_env` do nothing if parallel_env.world_size < 2: warnings.warn( "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything." ) return # NOTE(xiongkun): support cpu gloo only, add this environment variable to # enable cpu only gloo prarllel training) backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto') is_cpu_only = _is_cpuonly(backend) # 1. gpu xpu check, must be gpu or xpu, if not (is_cpu_only or core.is_compiled_with_cuda() or core.is_compiled_with_xpu() or core.is_compiled_with_npu() or core.is_compiled_with_mlu()): raise NotImplementedError( "If you want to use CPU-only version, please use 'gloo' as backend") if backend == "xccl": FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format( parallel_env.device_type) _check_var_exists(FLAGS_selected_custom_devices) else: if not is_cpu_only and core.is_compiled_with_cuda(): _check_var_exists("FLAGS_selected_gpus") backend = "nccl" if backend == "auto" else backend elif not is_cpu_only and core.is_compiled_with_xpu(): _check_var_exists('FLAGS_selected_xpus') backend = "bkcl" if backend == "auto" else backend elif not is_cpu_only and core.is_compiled_with_npu(): _check_var_exists('FLAGS_selected_npus') backend = "hccl" if backend == "auto" else backend elif not is_cpu_only and core.is_compiled_with_mlu(): _check_var_exists('FLAGS_selected_mlus') backend = "cncl" if backend == "auto" else backend _check_var_exists("PADDLE_TRAINER_ID") _check_var_exists("PADDLE_CURRENT_ENDPOINT") _check_var_exists("PADDLE_TRAINERS_NUM") _check_var_exists("PADDLE_TRAINER_ENDPOINTS") # NOTE(chenweihang): [ why config global place here? ] # the dygraph mode will be set to default mode, # users will not call `dygraph.guard` or `enable_dygraph` # directly, if they want to switch default place, # they need to call a function to change default place, # here just set correctly place to users if backend == "xccl": place = core.CustomPlace(parallel_env.device_type, parallel_env.device_id) elif is_cpu_only: place = core.CPUPlace() elif core.is_compiled_with_cuda(): place = core.CUDAPlace(parallel_env.device_id) elif core.is_compiled_with_xpu(): place = core.XPUPlace(parallel_env.device_id) elif core.is_compiled_with_npu(): place = core.NPUPlace(parallel_env.device_id) elif core.is_compiled_with_mlu(): place = core.MLUPlace(parallel_env.device_id) _set_expected_place(place) group = None if backend in _valid_backend_list and in_dygraph_mode(): if _default_group_name in _get_group_map_by_name(): return _get_group_map_by_name()[_default_group_name] _set_default_backend(backend) rank = int(os.getenv("PADDLE_TRAINER_ID")) world_size = int(os.getenv("PADDLE_TRAINERS_NUM")) assert rank >= 0 and world_size > rank and world_size > 1, ( "rank must be non-negative and world_size must be the " "maximum rank plus one. Moreover, at least two processes are " "required to create a process group.") master_addr = os.getenv("MASTER_ADDR", None) master_port = os.getenv("MASTER_PORT", None) endpoints = ":".join([master_addr, master_port ]) if master_addr and master_port else None if endpoints is None: endpoints = os.getenv("PADDLE_MASTER", None) if endpoints is None: endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0] assert endpoints, ( "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' " "must be specified, for example 'export MASTER_ADDR=127.0.0.1' " "and 'export MASTER_ADDR=54612'. Or you can start your training" "with paddle.distributed.run module.") master_addr, master_port = endpoints.split(":") master_port = int(master_port) is_master = rank == 0 stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900")) default_store = core.TCPStore(master_addr, master_port, is_master, world_size, timeout=stop_check_timeout) _set_default_store(default_store) pg = _new_process_group_impl(backend, default_store, rank, world_size, _default_group_name, pg_options=None) ranks = list(range(world_size)) group = Group(rank, 0, ranks, pg=pg, name=_default_group_name) _set_group_map_by_name(_default_group_name, group) _set_group_map(0, group) _set_group_map_backend(group, backend) _add_new_group(group) parallel_helper._set_parallel_ctx(True) paddle.distributed.barrier(group=group) return group node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints]) # 3: init gloo context (step 1: httpsever start) init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0")) if is_cpu_only or init_gloo or backend == "heter": ep_rank_0 = parallel_env.trainer_endpoints[0].split(":") manager = Manager() # glboal dict to store status http_server_d = manager.dict() http_server_d["running"] = False if parallel_env.rank == 0: # The scope for worker used by http server is '_worker' size = {'_worker': parallel_env.world_size} if backend == "heter": size = {'_worker': len(node_num)} http_server = Process(target=_start_kv_server, args=(int(ep_rank_0[1]), http_server_d, size)) http_server.daemon = True http_server_d["running"] = True http_server.start() # 4. init NCCL ParallelStrategy strategy = ParallelStrategy() if parallel_helper._is_parallel_ctx_initialized(): warnings.warn("The parallel environment has been initialized.") strategy.nranks = parallel_env.world_size strategy.local_rank = parallel_env.rank strategy.trainer_endpoints = parallel_env.trainer_endpoints strategy.current_endpoint = parallel_env.current_endpoint strategy.nrings = parallel_env.nrings # init nccl or hccl or bkcl or heter context if is_cpu_only: parallel_helper._set_parallel_ctx( core.GLOOParallelContext(strategy, place)) elif (backend == "heter"): parallel_helper._set_parallel_ctx( core.HeterParallelContext(strategy, parallel_env.device_id)) elif core.is_compiled_with_cuda(): parallel_helper._set_parallel_ctx( core.NCCLParallelContext(strategy, place)) elif core.is_compiled_with_xpu(): parallel_helper._set_parallel_ctx( core.BKCLParallelContext(strategy, place)) elif core.is_compiled_with_npu(): parallel_helper._set_parallel_ctx( core.HCCLParallelContext(strategy, place)) elif core.is_compiled_with_mlu(): parallel_helper._set_parallel_ctx( core.CNCLParallelContext(strategy, place)) if backend != "heter": other_endpoints = strategy.trainer_endpoints[:] other_endpoints.remove(strategy.current_endpoint) if not is_cpu_only and strategy.local_rank == 0: wait_server_ready(other_endpoints) parallel_helper._init_parallel_ctx() # 5: init gloo context (step 2: gloo init) # dividing init_gloo into two part beacause nccl and gloo # are separately looking for free ports which sometimes # leads to port-conflict. if (is_cpu_only or backend == "heter") and parallel_env.rank == 0: # compare to init_gloo, we don't need to # init gloo, because we do this in _init_parallel_ctx; http_server_d["running"] = False http_server.join() elif init_gloo: wait_server_ready([parallel_env.trainer_endpoints[0]]) gloo_strategy = core.GlooParallelStrategy() gloo_strategy.rank = parallel_env.rank gloo_strategy.rank_num = parallel_env.world_size gloo_strategy.ip_address = ep_rank_0[0] gloo_strategy.ip_port = int(ep_rank_0[1]) default_init_timeout_seconds = 3600 default_run_timeout_seconds = 9999999 gloo_strategy.init_seconds = default_init_timeout_seconds gloo_strategy.run_seconds = default_run_timeout_seconds gloo = core.GlooParallelContext(gloo_strategy) gloo.init() if parallel_env.rank == 0: http_server_d["running"] = False http_server.join() return group def get_rank(group=None): """ Returns the rank of current trainer in the given group, ranks are consecutive integers in [0, ``world_size``). If none of the group is given, the global group will be used as default. Args: group (Group, optional): The communication group you want to get rank of current trainer, use global group as default if group is None. Returns: (int) The rank of current trainer in the given group. Return -1 if the process is not part of the given group. Warning: Argument ``group`` only supports in dygraph mode. Examples: .. code-block:: python # Execute this script using distributed launch with one card configs. import paddle import paddle.distributed as dist dist.init_parallel_env() print("The rank is %d" % dist.get_rank()) # The rank is 0 """ if in_dygraph_mode() and group: return group.rank assert group is None, "Only support group argument in eager mode." return _get_global_parallel_env().rank def get_world_size(group=None): """ Returns the number of trainers (number of processes participating in current job) in the given group. If none of the group is given, the global group will be used as default. Args: group (Group, optional): The communication group you want to check world size, use global group as default if group is None. Returns: (int) The number of trainers in the given group. Return -1 if the process if not part of the given group. Warning: Argument ``group`` only supports in dygraph mode. Examples: .. code-block:: python # Execute this script using distributed launch with one card configs. import paddle import paddle.distributed as dist dist.init_parallel_env() print("The world_size is %d" % dist.get_world_size()) # The world_size is 1 """ if in_dygraph_mode() and group: return group.world_size assert group is None, "Only support group argument in eager mode." return _get_global_parallel_env().world_size