conv2d_op.cc 3.2 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

L
Luo Tao 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
L
Luo Tao 已提交
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
L
Luo Tao 已提交
16 17 18 19 20

namespace paddle {
namespace inference {
namespace tensorrt {

L
Luo Tao 已提交
21 22
class Conv2dOpConverter : public OpConverter {
 public:
23
  void operator()(const framework::proto::OpDesc& op,
24
                  const framework::Scope& scope, bool test_mode) override {
L
Luo Tao 已提交
25 26
    LOG(INFO)
        << "convert a fluid conv2d op to tensorrt conv layer without bias";
N
nhzlx 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39

    framework::OpDesc op_desc(op, nullptr);
    PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("Input").front());
    // Declare weights
    auto* Y_v = scope.FindVar(op_desc.Input("Filter").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
    auto* weight_data = Y_t->mutable_data<float>(platform::CPUPlace());

N
nhzlx 已提交
40
    PADDLE_ENFORCE(Y_t->dims().size(), 4UL);
N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    const int n_output = Y_t->dims()[0];
    const int filter_h = Y_t->dims()[2];
    const int filter_w = Y_t->dims()[3];

    const int groups = boost::get<int>(op_desc.GetAttr("groups"));
    const std::vector<int> dilations =
        boost::get<std::vector<int>>(op_desc.GetAttr("dilations"));
    const std::vector<int> strides =
        boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
    const std::vector<int> paddings =
        boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));

    nvinfer1::DimsHW nv_ksize(filter_h, filter_w);
    nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
                                  Y_t->memory_size() / sizeof(float)};

    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0};
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Convolution, *const_cast<nvinfer1::ITensor*>(X), n_output,
        nv_ksize, weight.get(), bias.get());
    PADDLE_ENFORCE(layer != nullptr);
    layer->setStride(nv_strides);
    layer->setPadding(nv_paddings);
    layer->setDilation(nv_dilations);
    layer->setNbGroups(groups);

    auto output_name = op_desc.Output("Output").front();
    engine_->SetITensor(output_name, layer->getOutput(0));
    if (test_mode) {
      engine_->DeclareOutput(output_name);
    }
L
Luo Tao 已提交
77 78
  }
};
L
Luo Tao 已提交
79

L
Luo Tao 已提交
80 81 82
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
83 84

REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);