data_device_transform_test.cu 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "gtest/gtest.h"

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/framework/scope.h"
W
Wu Yi 已提交
21
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
24
#include "paddle/fluid/platform/init.h"
25

26 27
#include "paddle/fluid/framework/pten_utils.h"

28 29 30 31 32 33 34 35 36 37
namespace paddle {
namespace framework {

template <typename T>
struct AddFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
};

class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
38
  void Make() {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    AddInput("input", "input1 of test op");
    AddOutput("output", "output of test op");
    AddAttr<bool>("use_gpu", "force to use gpu kernel").SetDefault(false);
    AddComment("This is test op");
  }
};

class TestOpWithKernel : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {}
  OpKernelType GetExpectedKernelType(
      const ExecutionContext& ctx) const override {
    if (Attr<bool>("use_gpu")) {
M
minqiyang 已提交
55
      VLOG(3) << "force use gpu kernel";
56
      return OpKernelType(proto::VarType::FP32, platform::CUDAPlace(0));
57
    } else {
M
minqiyang 已提交
58
      VLOG(3) << "use default kernel";
59
      return OpKernelType(proto::VarType::FP32,
60 61 62 63 64 65 66 67 68
                          ctx.Input<Tensor>("input")->place());
    }
  }
};

template <typename DeviceContext, typename T>
class TestKernel : public OpKernel<float> {
 public:
  void Compute(const ExecutionContext& ctx) const {
H
hong 已提交
69
    std::cout << ctx.DebugString() << std::endl;
70 71 72 73 74 75 76 77

    const Tensor* input = ctx.Input<Tensor>("input");

    std::cout << "input place:" << input->place() << std::endl;
    auto* output = ctx.Output<framework::LoDTensor>("output");
    output->Resize(input->dims());
    output->mutable_data<T>(ctx.GetPlace());

78
    pten::funcs::TransformFunctor<AddFunctor<T>, T, DeviceContext> functor(
79 80
        *input, *input, output, ctx.template device_context<DeviceContext>(),
        AddFunctor<T>());
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    functor.Run();
  }
};

}  // namespace framework
}  // namespace paddle

REGISTER_OP_WITHOUT_GRADIENT(
    test_op, paddle::framework::TestOpWithKernel,
    paddle::framework::OpKernelTestProtoAndCheckerMaker);
REGISTER_OP_CPU_KERNEL(
    test_op,
    paddle::framework::TestKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    test_op,
    paddle::framework::TestKernel<paddle::platform::CUDADeviceContext, float>);

static void BuildVar(const std::string& param_name,
                     std::initializer_list<const char*> arguments,
                     paddle::framework::proto::OpDesc::Var* var) {
  var->set_parameter(param_name);
  for (auto& arg_name : arguments) {
    *var->mutable_arguments()->Add() = arg_name;
  }
}

TEST(Operator, CPUtoGPU) {
108
  paddle::framework::InitDevices();
109 110 111 112 113 114 115 116 117 118 119 120

  paddle::framework::Scope scope;
  paddle::platform::CPUPlace cpu_place;

  // create an op to run on CPU
  paddle::framework::proto::OpDesc cpu_op_desc;
  cpu_op_desc.set_type("test_op");
  BuildVar("input", {"IN1"}, cpu_op_desc.add_inputs());
  BuildVar("output", {"OUT1"}, cpu_op_desc.add_outputs());

  auto cpu_op = paddle::framework::OpRegistry::CreateOp(cpu_op_desc);
  // prepare input
121 122 123
  auto* in_t = scope.Var("IN1")->GetMutable<paddle::framework::LoDTensor>();
  auto* src_ptr =
      in_t->mutable_data<float>({2, 3}, paddle::platform::CPUPlace());
124 125 126 127 128 129 130 131
  for (int i = 0; i < 2 * 3; ++i) {
    src_ptr[i] = static_cast<float>(i);
  }

  // get output
  auto* output = scope.Var("OUT1");
  cpu_op->Run(scope, cpu_place);

132
  auto* output_ptr = output->Get<paddle::framework::LoDTensor>().data<float>();
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  for (int i = 0; i < 2 * 3; ++i) {
    ASSERT_EQ(output_ptr[i], static_cast<float>(i) * 2);
  }

  // create an op to run on GPU
  paddle::framework::proto::OpDesc gpu_op_desc;
  gpu_op_desc.set_type("test_op");
  BuildVar("input", {"OUT1"}, gpu_op_desc.add_inputs());
  BuildVar("output", {"OUT2"}, gpu_op_desc.add_outputs());

  auto attr = gpu_op_desc.mutable_attrs()->Add();
  attr->set_name("use_gpu");
  attr->set_type(paddle::framework::proto::AttrType::BOOLEAN);
  attr->set_b(true);

  auto gpu_op = paddle::framework::OpRegistry::CreateOp(gpu_op_desc);

  paddle::platform::CUDAPlace cuda_place(0);
  // get output
  auto* output2 = scope.Var("OUT2");
  gpu_op->Run(scope, cuda_place);
M
minqiyang 已提交
154
  VLOG(3) << "after gpu_op run";
155 156

  // auto* output2_ptr = output2->Get<LoDTensor>().data<float>();
157 158
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
159 160 161
  auto dev_ctx = pool.Get(cuda_place);

  paddle::framework::Tensor output_tensor;
162 163 164
  paddle::framework::TensorCopy(output2->Get<paddle::framework::LoDTensor>(),
                                paddle::platform::CPUPlace(), *dev_ctx,
                                &output_tensor);
165 166 167 168 169 170 171

  dev_ctx->Wait();
  float* output2_ptr = output_tensor.data<float>();
  for (int i = 0; i < 2 * 3; ++i) {
    ASSERT_EQ(output2_ptr[i], static_cast<float>(i) * 4);
  }
}