data_device_transform_test.cu 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "gtest/gtest.h"

Y
Yi Wang 已提交
17 18 19
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
W
Wu Yi 已提交
20
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
Y
Yi Wang 已提交
21 22
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
23
#include "paddle/fluid/platform/init.h"
24 25 26 27 28 29 30 31 32 33 34

namespace paddle {
namespace framework {

template <typename T>
struct AddFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
};

class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
35
  void Make() {
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    AddInput("input", "input1 of test op");
    AddOutput("output", "output of test op");
    AddAttr<bool>("use_gpu", "force to use gpu kernel").SetDefault(false);
    AddComment("This is test op");
  }
};

class TestOpWithKernel : public OperatorWithKernel {
 public:
  using OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {}
  OpKernelType GetExpectedKernelType(
      const ExecutionContext& ctx) const override {
    if (Attr<bool>("use_gpu")) {
M
minqiyang 已提交
52
      VLOG(3) << "force use gpu kernel";
53
      return OpKernelType(proto::VarType::FP32, platform::CUDAPlace(0));
54
    } else {
M
minqiyang 已提交
55
      VLOG(3) << "use default kernel";
56
      return OpKernelType(proto::VarType::FP32,
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
                          ctx.Input<Tensor>("input")->place());
    }
  }
};

template <typename DeviceContext, typename T>
class TestKernel : public OpKernel<float> {
 public:
  void Compute(const ExecutionContext& ctx) const {
    std::cout << ctx.op().DebugString() << std::endl;

    const Tensor* input = ctx.Input<Tensor>("input");

    std::cout << "input place:" << input->place() << std::endl;
    auto* output = ctx.Output<framework::LoDTensor>("output");
    output->Resize(input->dims());
    output->mutable_data<T>(ctx.GetPlace());

    operators::TransformFunctor<AddFunctor<T>, T, DeviceContext> functor(
        input, input, output, ctx.template device_context<DeviceContext>(),
        AddFunctor<T>());
    functor.Run();
  }
};

}  // namespace framework
}  // namespace paddle

REGISTER_OP_WITHOUT_GRADIENT(
    test_op, paddle::framework::TestOpWithKernel,
    paddle::framework::OpKernelTestProtoAndCheckerMaker);
REGISTER_OP_CPU_KERNEL(
    test_op,
    paddle::framework::TestKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CUDA_KERNEL(
    test_op,
    paddle::framework::TestKernel<paddle::platform::CUDADeviceContext, float>);

static void BuildVar(const std::string& param_name,
                     std::initializer_list<const char*> arguments,
                     paddle::framework::proto::OpDesc::Var* var) {
  var->set_parameter(param_name);
  for (auto& arg_name : arguments) {
    *var->mutable_arguments()->Add() = arg_name;
  }
}

TEST(Operator, CPUtoGPU) {
105
  paddle::framework::InitDevices(true);
106 107 108 109 110 111 112 113 114 115 116 117

  paddle::framework::Scope scope;
  paddle::platform::CPUPlace cpu_place;

  // create an op to run on CPU
  paddle::framework::proto::OpDesc cpu_op_desc;
  cpu_op_desc.set_type("test_op");
  BuildVar("input", {"IN1"}, cpu_op_desc.add_inputs());
  BuildVar("output", {"OUT1"}, cpu_op_desc.add_outputs());

  auto cpu_op = paddle::framework::OpRegistry::CreateOp(cpu_op_desc);
  // prepare input
118 119 120
  auto* in_t = scope.Var("IN1")->GetMutable<paddle::framework::LoDTensor>();
  auto* src_ptr =
      in_t->mutable_data<float>({2, 3}, paddle::platform::CPUPlace());
121 122 123 124 125 126 127 128
  for (int i = 0; i < 2 * 3; ++i) {
    src_ptr[i] = static_cast<float>(i);
  }

  // get output
  auto* output = scope.Var("OUT1");
  cpu_op->Run(scope, cpu_place);

129
  auto* output_ptr = output->Get<paddle::framework::LoDTensor>().data<float>();
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  for (int i = 0; i < 2 * 3; ++i) {
    ASSERT_EQ(output_ptr[i], static_cast<float>(i) * 2);
  }

  // create an op to run on GPU
  paddle::framework::proto::OpDesc gpu_op_desc;
  gpu_op_desc.set_type("test_op");
  BuildVar("input", {"OUT1"}, gpu_op_desc.add_inputs());
  BuildVar("output", {"OUT2"}, gpu_op_desc.add_outputs());

  auto attr = gpu_op_desc.mutable_attrs()->Add();
  attr->set_name("use_gpu");
  attr->set_type(paddle::framework::proto::AttrType::BOOLEAN);
  attr->set_b(true);

  auto gpu_op = paddle::framework::OpRegistry::CreateOp(gpu_op_desc);

  paddle::platform::CUDAPlace cuda_place(0);
  // get output
  auto* output2 = scope.Var("OUT2");
  gpu_op->Run(scope, cuda_place);
M
minqiyang 已提交
151
  VLOG(3) << "after gpu_op run";
152 153

  // auto* output2_ptr = output2->Get<LoDTensor>().data<float>();
154 155
  paddle::platform::DeviceContextPool& pool =
      paddle::platform::DeviceContextPool::Instance();
156 157 158
  auto dev_ctx = pool.Get(cuda_place);

  paddle::framework::Tensor output_tensor;
159 160 161
  paddle::framework::TensorCopy(output2->Get<paddle::framework::LoDTensor>(),
                                paddle::platform::CPUPlace(), *dev_ctx,
                                &output_tensor);
162 163 164 165 166 167 168

  dev_ctx->Wait();
  float* output2_ptr = output_tensor.data<float>();
  for (int i = 0; i < 2 * 3; ++i) {
    ASSERT_EQ(output2_ptr[i], static_cast<float>(i) * 4);
  }
}