CrossChannelNormLayer.cpp 4.6 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
16
#include "NormLayer.h"
G
gaoyuan 已提交
17 18 19 20 21
#include "paddle/math/BaseMatrix.h"
#include "paddle/math/Matrix.h"

namespace paddle {

G
gaoyuan 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
MatrixPtr CrossChannelNormLayer::createSampleMatrix(MatrixPtr data,
                                                    size_t iter,
                                                    size_t spatialDim) {
  return Matrix::create(data->getData() + iter * channels_ * spatialDim,
                        channels_,
                        spatialDim,
                        false,
                        useGpu_);
}

MatrixPtr CrossChannelNormLayer::createSpatialMatrix(MatrixPtr data,
                                                     size_t iter,
                                                     size_t spatialDim) {
  return Matrix::create(
      data->getData() + iter * spatialDim, 1, spatialDim, false, useGpu_);
}

39
void CrossChannelNormLayer::forward(PassType passType) {
G
gaoyuan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  Layer::forward(passType);
  MatrixPtr inV = getInputValue(0);

  size_t batchSize = inV->getHeight();
  size_t dataDim = inV->getWidth();
  CHECK_EQ(getSize(), dataDim);

  reserveOutput(batchSize, dataDim);
  MatrixPtr outV = getOutputValue();
  size_t spatialDim = dataDim / channels_;

  Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_);
  Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_);
  Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_);
  normBuffer_->zeroMem();
  // add eps to avoid overflow
  normBuffer_->addScalar(*normBuffer_, 1e-6);
  inV->square2(*dataBuffer_);
  for (size_t i = 0; i < batchSize; i++) {
G
gaoyuan 已提交
59 60 61 62 63
    const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
    const MatrixPtr dataTmp = createSampleMatrix(dataBuffer_, i, spatialDim);
    MatrixPtr outVTmp = createSampleMatrix(outV, i, spatialDim);
    MatrixPtr normTmp = createSpatialMatrix(normBuffer_, i, spatialDim);

G
gaoyuan 已提交
64
    // compute norm.
G
gaoyuan 已提交
65
    spatialBuffer_->sumCols(*dataTmp, 1, 0);
G
gaoyuan 已提交
66 67
    spatialBuffer_->sqrt2(*spatialBuffer_);
    normTmp->copyFrom(*spatialBuffer_);
G
gaoyuan 已提交
68 69
    outVTmp->copyFrom(*inVTmp);
    outVTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
70
    // scale the layer.
G
gaoyuan 已提交
71
    outVTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
72 73 74
  }
}

75
void CrossChannelNormLayer::backward(const UpdateCallback& callback) {
G
gaoyuan 已提交
76 77 78 79 80 81 82 83 84 85 86
  MatrixPtr inG = getInputGrad(0);
  MatrixPtr inV = getInputValue(0);
  MatrixPtr outG = getOutputGrad();
  MatrixPtr outV = getOutputValue();

  size_t batchSize = inG->getHeight();
  size_t dataDim = inG->getWidth();
  size_t spatialDim = dataDim / channels_;

  dataBuffer_->dotMul(*outG, *outV);
  Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_);
87 88
  Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_);
  Matrix::resizeOrCreate(sampleBuffer_, channels_, spatialDim, false, useGpu_);
G
gaoyuan 已提交
89 90
  scaleDiff_->zeroMem();
  for (size_t i = 0; i < batchSize; i++) {
G
gaoyuan 已提交
91 92 93 94 95 96 97
    MatrixPtr outGTmp = createSampleMatrix(outG, i, spatialDim);
    const MatrixPtr dataTmp = createSampleMatrix(dataBuffer_, i, spatialDim);
    const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
    const MatrixPtr inGTmp = createSampleMatrix(inG, i, spatialDim);
    const MatrixPtr normTmp = createSpatialMatrix(normBuffer_, i, spatialDim);

    channelBuffer_->sumRows(*dataTmp, 1, 0);
G
gaoyuan 已提交
98 99 100 101
    channelBuffer_->dotDiv(*channelBuffer_, *(scale_->getW()));
    // store a / scale[i] in scaleDiff_ temporary
    scaleDiff_->add(*channelBuffer_, 1.);

G
gaoyuan 已提交
102
    sampleBuffer_->dotMul(*inVTmp, *outGTmp);
G
gaoyuan 已提交
103 104
    spatialBuffer_->sumCols(*sampleBuffer_, 1., 1.);
    // scale the grad
G
gaoyuan 已提交
105 106
    inGTmp->copyFrom(*inVTmp);
    inGTmp->mulRowVector(*spatialBuffer_);
G
gaoyuan 已提交
107 108
    // divide by square of norm
    spatialBuffer_->dotMul(*normTmp, *normTmp);
G
gaoyuan 已提交
109
    inGTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
110
    // subtract
G
gaoyuan 已提交
111
    inGTmp->add(*outGTmp, -1, 1);
G
gaoyuan 已提交
112
    // divide by norm
G
gaoyuan 已提交
113
    inGTmp->divRowVector(*normTmp);
G
gaoyuan 已提交
114
    // scale the diff
G
gaoyuan 已提交
115
    inGTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
116 117 118 119 120 121 122
  }
  // updata scale
  if (scale_->getWGrad()) scale_->getWGrad()->copyFrom(*scaleDiff_);
  scale_->getParameterPtr()->incUpdate(callback);
}

}  // namespace paddle