CrossChannelNormLayer.cpp 4.6 KB
Newer Older
G
gaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
16
#include "NormLayer.h"
G
gaoyuan 已提交
17 18 19 20 21
#include "paddle/math/BaseMatrix.h"
#include "paddle/math/Matrix.h"

namespace paddle {

22
void CrossChannelNormLayer::forward(PassType passType) {
G
gaoyuan 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  Layer::forward(passType);
  MatrixPtr inV = getInputValue(0);

  size_t batchSize = inV->getHeight();
  size_t dataDim = inV->getWidth();
  CHECK_EQ(getSize(), dataDim);

  reserveOutput(batchSize, dataDim);
  MatrixPtr outV = getOutputValue();
  size_t spatialDim = dataDim / channels_;

  Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_);
  Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_);
  Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_);
  normBuffer_->zeroMem();
  dataBuffer_->zeroMem();
  // add eps to avoid overflow
  normBuffer_->addScalar(*normBuffer_, 1e-6);
  inV->square2(*dataBuffer_);
  for (size_t i = 0; i < batchSize; i++) {
    MatrixPtr inTmp = Matrix::create(
        inV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    MatrixPtr dataTmp = Matrix::create(dataBuffer_->getData() + i * dataDim,
                                       channels_,
                                       spatialDim,
                                       false,
                                       useGpu_);
    MatrixPtr outTmp = Matrix::create(
        outV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    MatrixPtr normTmp = Matrix::create(
        normBuffer_->getData() + i * spatialDim, 1, spatialDim, false, useGpu_);
    // compute norm.
    spatialBuffer_->sumCols(*dataTmp, 1, 1);
    spatialBuffer_->sqrt2(*spatialBuffer_);
    normTmp->copyFrom(*spatialBuffer_);
58 59
    outTmp->copyFrom(*inTmp);
    outTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
60
    // scale the layer.
61
    outTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
62 63 64
  }
}

65
void CrossChannelNormLayer::backward(const UpdateCallback& callback) {
G
gaoyuan 已提交
66 67 68 69 70 71 72 73 74 75 76
  MatrixPtr inG = getInputGrad(0);
  MatrixPtr inV = getInputValue(0);
  MatrixPtr outG = getOutputGrad();
  MatrixPtr outV = getOutputValue();

  size_t batchSize = inG->getHeight();
  size_t dataDim = inG->getWidth();
  size_t spatialDim = dataDim / channels_;

  dataBuffer_->dotMul(*outG, *outV);
  Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_);
77 78
  Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_);
  Matrix::resizeOrCreate(sampleBuffer_, channels_, spatialDim, false, useGpu_);
G
gaoyuan 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  scaleDiff_->zeroMem();
  for (size_t i = 0; i < batchSize; i++) {
    // propagate to param.
    MatrixPtr dataBufferTmp =
        Matrix::create(dataBuffer_->getData() + i * dataDim,
                       channels_,
                       spatialDim,
                       false,
                       useGpu_);
    const MatrixPtr inValueTmp = Matrix::create(
        inV->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    const MatrixPtr outGradTmp = Matrix::create(
        outG->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    MatrixPtr inGradTmp = Matrix::create(
        inG->getData() + i * dataDim, channels_, spatialDim, false, useGpu_);
    const MatrixPtr normTmp = Matrix::create(
        normBuffer_->getData() + i * spatialDim, 1, spatialDim, false, useGpu_);
    channelBuffer_->sumRows(*dataBufferTmp, 1, 1);
    channelBuffer_->dotDiv(*channelBuffer_, *(scale_->getW()));
    // store a / scale[i] in scaleDiff_ temporary
    scaleDiff_->add(*channelBuffer_, 1.);

    sampleBuffer_->dotMul(*inValueTmp, *outGradTmp);
    spatialBuffer_->sumCols(*sampleBuffer_, 1., 1.);
    // scale the grad
104 105
    inGradTmp->copyFrom(*inValueTmp);
    inGradTmp->mulRowVector(*spatialBuffer_);
G
gaoyuan 已提交
106 107
    // divide by square of norm
    spatialBuffer_->dotMul(*normTmp, *normTmp);
108
    inGradTmp->divRowVector(*spatialBuffer_);
G
gaoyuan 已提交
109 110 111
    // subtract
    inGradTmp->add(*outGradTmp, -1, 1);
    // divide by norm
112
    inGradTmp->divRowVector(*normTmp);
G
gaoyuan 已提交
113
    // scale the diff
114
    inGradTmp->mulColVector(*scale_->getW());
G
gaoyuan 已提交
115 116 117 118 119 120 121
  }
  // updata scale
  if (scale_->getWGrad()) scale_->getWGrad()->copyFrom(*scaleDiff_);
  scale_->getParameterPtr()->incUpdate(callback);
}

}  // namespace paddle