transpose_op.cc 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16
#include <vector>
X
xzl 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
28 29 30 31
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
32
    size_t x_rank = x_dims.size();
X
xzl 已提交
33
    size_t axis_size = axis.size();
X
xzl 已提交
34

X
xzl 已提交
35
    PADDLE_ENFORCE_EQ(x_rank, axis_size,
36
                      "The input tensor's rank(%d) "
37
                      "should be equal to the axis's size(%d)",
X
xzl 已提交
38
                      x_rank, axis_size);
39 40 41 42 43 44 45 46

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
      PADDLE_ENFORCE(
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
          "Each element of Attribute axis should be a unique value "
          "range from 0 to (dims - 1), "
          "where the dims is the axis's size");
X
xzl 已提交
47
    }
X
xzl 已提交
48

X
xzl 已提交
49
    framework::DDim out_dims(x_dims);
50
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
51
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
52
    }
Q
Qiao Longfei 已提交
53
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
54 55 56 57 58
  }
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
59
  TransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker)
X
xzl 已提交
60
      : OpProtoAndCheckerMaker(proto, op_checker) {
61
    AddInput(
X
xzl 已提交
62
        "X",
63 64
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
65 66
    AddAttr<std::vector<int>>(
        "axis",
67 68 69
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
X
xzl 已提交
70
    AddComment(R"DOC(
71 72
Transpose Operator.

73 74
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
75

76 77 78 79 80 81
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
82

83
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
84

85
    then the output $Y$ is:
W
wanghaoshuang 已提交
86

87 88 89 90 91 92
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
93

94 95
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is 
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
96

X
xzl 已提交
97 98 99 100 101 102 103 104
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

105
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
106 107 108 109 110 111 112 113
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
114 115 116 117 118 119 120 121 122
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad,
            ops::TransposeOpGrad);
Q
QI JUN 已提交
123 124
REGISTER_OP_CPU_KERNEL(
    transpose, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>);
X
xzl 已提交
125 126
REGISTER_OP_CPU_KERNEL(
    transpose_grad,
Q
QI JUN 已提交
127
    ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>);