ProcessGroupHCCL.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
L
lilong12 已提交
16 17
#include "paddle/fluid/distributed/collective/Common.h"
#include "paddle/fluid/distributed/collective/HCCLTools.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/device/npu/hccl_helper.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"

DECLARE_bool(hccl_blocking_wait);
// DECLARE_bool(use_stream_safe_npu_allocator);

constexpr int64_t kWaitBlockTImeout = 10;

namespace paddle {
namespace distributed {

void SyncDefaultStream(
    const std::vector<Place>& places,
    std::vector<NPUEventManager>& hcclEvents,                   // NOLINT
    std::vector<std::unique_ptr<NPUDeviceContext>>& dev_ctx) {  // NOLINT
  for (size_t i = 0; i < places.size(); ++i) {
    auto* default_ctx = static_cast<platform::NPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places[i]));
    hcclEvents[i].Record(*dev_ctx[i]);
    hcclEvents[i].Block(*default_ctx);
  }
}

std::shared_ptr<ProcessGroupHCCL::HCCLTask> ProcessGroupHCCL::CreateTask(
    std::vector<Place> places, int rank, CommType comm_type,
L
lilong12 已提交
47
    const std::vector<phi::DenseTensor>& inputs) {
48 49 50 51
  return std::make_shared<ProcessGroupHCCL::HCCLTask>(places, rank, comm_type,
                                                      inputs);
}

L
lilong12 已提交
52 53 54
ProcessGroupHCCL::HCCLTask::HCCLTask(
    const std::vector<Place>& places, int rank, CommType CommType,
    const std::vector<phi::DenseTensor>& inputs)
55 56 57 58 59 60 61 62
    : Task(rank, inputs, CommType), places_(places) {
  control_events_.resize(places.size());
  hcclComms_.resize(places.size());
}

ProcessGroupHCCL::HCCLTask::~HCCLTask() {}

void ProcessGroupHCCL::HCCLTask::SetOutputs(
L
lilong12 已提交
63 64
    std::vector<phi::DenseTensor>& outputs) {  // NOLINT
  outputs_ = std::make_shared<std::vector<phi::DenseTensor>>(outputs);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
}

void ProcessGroupHCCL::HCCLTask::SynchronizeStreams() {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto* default_ctx = static_cast<platform::NPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(places_[i]));
    platform::NPUStreamWaitEvent(default_ctx->stream(),
                                 control_events_[i].GetRawNPUEvent());
  }
}

bool ProcessGroupHCCL::HCCLTask::IsCompleted() {
  for (size_t i = 0; i < places_.size(); ++i) {
    if (!control_events_[i].Query()) {
      return false;
    }
  }

  return true;
}

// TODO(sandyhouse): Add timeout for wait, now timeout unused
bool ProcessGroupHCCL::HCCLTask::Wait(std::chrono::milliseconds timeout) {
  SynchronizeStreams();
89 90 91
  // NOTE(sandyhouse): It will block host for sync
  while (!IsCompleted()) {
    std::this_thread::sleep_for(std::chrono::milliseconds(kWaitBlockTImeout));
92 93 94 95 96 97 98 99
  }
  return true;
}

// Same as Wait
void ProcessGroupHCCL::HCCLTask::Synchronize() { Wait(kWaitTimeout); }

ProcessGroupHCCL::ProcessGroupHCCL(const std::shared_ptr<Store>& store,
L
lilong12 已提交
100 101
                                   int rank, int size, int gid)
    : ProcessGroup(rank, size, gid), store_(store) {}
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

void ProcessGroupHCCL::BroadcastUniqueHCCLID(
    std::vector<HcclRootInfo>& hccl_ids) {  // NOLINT
  if (rank_ == 0) {
    for (size_t i = 0; i < hccl_ids.size(); i++) {
      auto key = "ProcessGroupHCCL/hccl_ids/" + std::to_string(i);
      auto hccl_id = std::vector<uint8_t>(
          reinterpret_cast<uint8_t*>(&hccl_ids[i]),
          reinterpret_cast<uint8_t*>(&hccl_ids[i]) + sizeof(HcclRootInfo));
      store_->set(key, hccl_id);
    }
  } else {
    for (size_t i = 0; i < hccl_ids.size(); i++) {
      auto key = "ProcessGroupHCCL/hccl_ids/" + std::to_string(i);
      auto ret = store_->get(key);
      std::memcpy(&hccl_ids[i], ret.data(), ret.size());
    }
  }
}

// create HCCLManager cache for places_key
void ProcessGroupHCCL::CreateHCCLManagerCache(
    const std::string& places_key, const std::vector<Place>& places) {
  PADDLE_ENFORCE_EQ(places_key.empty(), false,
                    platform::errors::PreconditionNotMet(
                        "Not able to create/get the HCCL Communicator since "
                        "the NPU place are not known"));

  std::vector<std::shared_ptr<HCCLCommManager>> hccl_comms;
  hccl_comms.resize(places.size());

  // using vector just for broadcast
  std::vector<HcclRootInfo> hccl_ids;
  hccl_ids.resize(1);
  auto& hccl_id = hccl_ids.front();

  if (rank_ == 0) {
    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclGetRootInfo(&hccl_id));
  }
  BroadcastUniqueHCCLID(hccl_ids);

  VLOG(3) << "init hccl rank: " << rank_ << ", nranks: " << size_
          << ", place: " << places_key
          << ", hccl uniqueid: " << SerializeHCCLUniqueId(hccl_id);

  std::vector<std::unique_ptr<NPUDeviceContext>> dev_ctx;
  dev_ctx.resize(places.size());

  std::unique_ptr<HcclComm[]> comms(new HcclComm[places.size()]);
  for (size_t i = 0; i < places.size(); ++i) {
    platform::NPUDeviceGuard guard(places[i].GetDeviceId());
    hccl_comms[i] = HCCLCommManager::Create(GetSize(), GetRank(), &hccl_id,
                                            comms.get() + i);
    dev_ctx[i].reset(new NPUDeviceContext(places[i]));
  }

  std::vector<NPUEventManager> events;
  events.resize(places.size());

  // These caches will be useful to process sync/wait/communicate
  places_to_events_.emplace(places_key, std::move(events));
  places_to_hcclcomm_.emplace(places_key, std::move(hccl_comms));
  places_to_ctx_.emplace(places_key, std::move(dev_ctx));
}

template <typename Fn>
std::shared_ptr<ProcessGroup::Task> ProcessGroupHCCL::Collective(
L
lilong12 已提交
169 170
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, Fn fn, CommType op_type) {
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  const auto places = GetPlaceList(inputs);
  const auto key = GetKeyFromPlaces(places);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    if (places_to_hcclcomm_.find(key) == places_to_hcclcomm_.end()) {
      CreateHCCLManagerCache(key, places);
    }
  }

  auto& hccl_comms = places_to_hcclcomm_[key];

  SyncDefaultStream(places, places_to_events_[key], places_to_ctx_[key]);

  auto task = CreateTask(places, rank_, op_type, inputs);
  task->SetOutputs(outputs);

  // if (FLAGS_use_stream_safe_npu_allocator) {
  //   for (size_t i = 0; i < inputs.size(); ++i) {
  //     platform::NPUDeviceGuard guard(places[i].GetDeviceId());
  //     auto dense_tensor =
  //         std::dynamic_pointer_cast<phi::DenseTensor>(inputs[i].impl());
  //     memory::RecordStream(dense_tensor->Holder(),
  //                          places_to_ctx_[key][i]->stream());
  //   }
  // }

  for (size_t i = 0; i < inputs.size(); ++i) {
    platform::NPUDeviceGuard guard(places[i].GetDeviceId());
    const auto& hccl_stream = places_to_ctx_[key][i]->stream();
    fn(inputs[i], outputs[i], hccl_comms[i]->GetHcclComm(), hccl_stream);
  }

  for (size_t i = 0; i < inputs.size(); ++i) {
    platform::NPUDeviceGuard guard(places[i].GetDeviceId());
    task->control_events_[i].Record(*places_to_ctx_[key][i]);
  }
  return task;
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupHCCL::AllReduce(
L
lilong12 已提交
212 213 214 215 216 217 218 219 220 221 222 223
    std::vector<phi::DenseTensor>& in_tensors,   // NOLINT
    std::vector<phi::DenseTensor>& out_tensors,  // NOLINT
    const AllreduceOptions& opts) {
  return Collective(in_tensors, out_tensors,
                    [&](phi::DenseTensor& input, phi::DenseTensor& output,
                        HcclComm comm, const aclrtStream& stream) {
                      return platform::dynload::HcclAllReduce(
                          input.data(), output.data(), input.numel(),
                          platform::ToHCCLDataType(input.dtype()),
                          ToHCCLRedType(opts.reduce_op), comm, stream);
                    },
                    CommType::ALLREDUCE);
224 225 226
}

std::shared_ptr<ProcessGroup::Task> ProcessGroupHCCL::Broadcast(
L
lilong12 已提交
227 228 229
    std::vector<phi::DenseTensor>& in_tensors,   // NOLINT
    std::vector<phi::DenseTensor>& out_tensors,  // NOLINT
    const BroadcastOptions& opts) {
230 231 232 233 234 235
  // PADDLE_ENFORCE_EQ(
  //     CheckTensorsInNPUPlace(tensors), true,
  //     platform::errors::InvalidArgument("All inputs should be in
  //     CudaPlace."));

  return Collective(
L
lilong12 已提交
236 237
      in_tensors, out_tensors,
      [&](phi::DenseTensor& input, phi::DenseTensor& output, HcclComm comm,
238
          const aclrtStream& stream) {
L
lilong12 已提交
239 240 241 242 243 244 245 246 247 248
        int root = opts.source_rank * in_tensors.size() + opts.source_root;
        if (rank_ == root) {
          return platform::dynload::HcclBroadcast(
              input.data(), input.numel(),
              platform::ToHCCLDataType(input.dtype()), root, comm, stream);
        } else {
          return platform::dynload::HcclBroadcast(
              output.data(), output.numel(),
              platform::ToHCCLDataType(output.dtype()), root, comm, stream);
        }
249 250 251 252 253 254
      },
      CommType::BROADCAST);
}

}  //  namespace distributed
}  //  namespace paddle