ProcessGroupGloo.cc 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>

#ifdef _WIN32
#include <gloo/common/win.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#else
#include <netdb.h>
#include <sys/socket.h>
#include <unistd.h>
#endif

#include <gloo/broadcast.h>
28 29
#include <gloo/reduce.h>
#include <gloo/scatter.h>
L
lilong12 已提交
30
#include "paddle/fluid/distributed/collective/Common.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {

#ifdef _WIN32
#define GENERATE_FUNC(type, func, ...)       \
  switch (type) {                            \
    case experimental::DataType::FLOAT32:    \
      func<float>(__VA_ARGS__);              \
      break;                                 \
    case experimental::DataType::FLOAT64:    \
      func<double>(__VA_ARGS__);             \
      break;                                 \
    case experimental::DataType::FLOAT16:    \
      func<gloo::float16>(__VA_ARGS__);      \
      break;                                 \
    case experimental::DataType::INT32:      \
      func<int32_t>(__VA_ARGS__);            \
      break;                                 \
    case experimental::DataType::INT64:      \
      func<int64_t>(__VA_ARGS__);            \
      break;                                 \
    default:                                 \
      VLOG(0) << "Error: Unknown DataType."; \
      exit(-1);                              \
  }

#define HOST_NAME_MAX 256

#else
#define GENERATE_FUNC(type, func, args...)   \
  switch (type) {                            \
    case experimental::DataType::FLOAT32:    \
      func<float>(args);                     \
      break;                                 \
    case experimental::DataType::FLOAT64:    \
      func<double>(args);                    \
      break;                                 \
    case experimental::DataType::FLOAT16:    \
      func<gloo::float16>(args);             \
      break;                                 \
    case experimental::DataType::INT32:      \
      func<int32_t>(args);                   \
      break;                                 \
    case experimental::DataType::INT64:      \
      func<int64_t>(args);                   \
      break;                                 \
    default:                                 \
      VLOG(0) << "Error: Unknown DataType."; \
      exit(-1);                              \
  }
#endif

typedef void (*reduce_func)(void*, const void*, const void*, size_t);

template <typename T>
reduce_func get_function(const ReduceOp& r) {
  switch (r) {
    case ReduceOp::SUM:
      return reduce_func(&::gloo::sum<T>);
    case ReduceOp::PRODUCT:
      return reduce_func(&::gloo::product<T>);
    case ReduceOp::MIN:
      return reduce_func(&::gloo::min<T>);
    case ReduceOp::MAX:
      return reduce_func(&::gloo::max<T>);
    case ReduceOp::AVG:
      VLOG(0) << "Error: Unsupported ReduceOp::AVG.";
      exit(-1);
  }

  VLOG(0) << "Error: Unknown ReduceOp.";
  exit(-1);
}

template <typename T>
L
lilong12 已提交
110 111
T* get_data(phi::DenseTensor& tensor) {  // NOLINT
  return reinterpret_cast<T*>(tensor.data());
112 113 114
}

template <typename T>
L
lilong12 已提交
115 116 117 118
std::vector<T*> get_multi_data(
    std::vector<phi::DenseTensor>& tensors) {  // NOLINT
  std::vector<T*> ret;
  ret.reserve(tensors.size());
119
  for (size_t i = 0; i < tensors.size(); i++) {
L
lilong12 已提交
120
    ret.push_back(get_data<T>(tensors[i]));
121 122 123 124 125
  }
  return ret;
}

template <typename T, typename P>
L
lilong12 已提交
126
void set_output(P& opts, phi::DenseTensor& tensor) {  // NOLINT
127 128 129 130
  opts.setOutput(get_data<T>(tensor), tensor.numel());
}

template <typename T, typename P>
L
lilong12 已提交
131
void set_input(P& opts, phi::DenseTensor& tensor) {  // NOLINT
132 133 134 135
  opts.setInput(get_data<T>(tensor), tensor.numel());
}

template <typename T, typename P>
L
lilong12 已提交
136 137
void set_outputs(P& opts,                                   // NOLINT
                 std::vector<phi::DenseTensor>& tensors) {  // NOLINT
138 139 140 141
  opts.setOutputs(get_multi_data<T>(tensors), tensors[0].numel());
}

template <typename T, typename P>
L
lilong12 已提交
142 143
void set_inputs(P& opts,                                   // NOLINT
                std::vector<phi::DenseTensor>& tensors) {  // NOLINT
144 145 146
  opts.setInputs(get_multi_data<T>(tensors), tensors[0].numel());
}

147
template <typename T, typename P>
L
lilong12 已提交
148 149
void set_inputs_for_scatter(P& opts,                   // NOLINT
                            phi::DenseTensor& tensor,  // NOLINT
150
                            int nranks) {
L
lilong12 已提交
151 152 153
  std::vector<T*> ret;
  ret.reserve(nranks);
  T* raw_pointer = reinterpret_cast<T*>(tensor.data());
154 155
  size_t offset = 0;
  for (int i = 0; i < nranks; i++) {
L
lilong12 已提交
156 157
    ret.push_back(raw_pointer + offset);
    offset += tensor.numel() / nranks;
158
  }
L
lilong12 已提交
159
  opts.setInputs(ret, tensor.numel() / nranks);
160 161
}

L
lilong12 已提交
162 163 164
ProcessGroupGloo::GlooTask::GlooTask(
    int rank, const std::vector<phi::DenseTensor>& inputs, CommType comm_type)
    : ProcessGroup::Task(rank, inputs, comm_type) {}
165

166
ProcessGroupGloo::ProcessGroupGloo(
L
lilong12 已提交
167 168
    const std::shared_ptr<distributed::Store>& store, int rank, int world_size,
    int gid, const std::shared_ptr<GlooOptions> options)
L
lilong12 已提交
169 170 171
    : ProcessGroup(rank, world_size, gid),
      _tag(0),
      _store(new GlooStore(store)) {
172 173
  _context = std::make_shared<gloo::rendezvous::Context>(rank, world_size);
  auto prefix_store =
L
lilong12 已提交
174
      ::gloo::rendezvous::PrefixStore(std::to_string(gid), *_store);
175 176 177 178 179 180
  _context->connectFullMesh(prefix_store, options->device);
}

class BroadcastGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  BroadcastGlooTask(const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
181 182 183
                    std::vector<phi::DenseTensor>& inputs,   // NOLINT
                    std::vector<phi::DenseTensor>& outputs,  // NOLINT
                    int rank, int root, uint32_t tag)
184 185 186 187
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::BROADCAST),
        _context(context),
        _root(root),
        _inputs(inputs),
L
lilong12 已提交
188
        _outputs(outputs),
189 190
        _tag(tag) {}

L
lilong12 已提交
191
  void Run() override { _do_broadcast(_inputs[0], _outputs[0]); }
192 193 194 195

 private:
  std::shared_ptr<gloo::Context> _context;
  const int _root;
L
lilong12 已提交
196 197
  std::vector<phi::DenseTensor> _inputs{};
  std::vector<phi::DenseTensor> _outputs{};
198 199
  const uint32_t _tag;

L
lilong12 已提交
200
  void _do_broadcast(phi::DenseTensor& in, phi::DenseTensor& out) {  // NOLINT
201
    gloo::BroadcastOptions opts(_context);
L
lilong12 已提交
202 203 204 205 206
    const auto& dtype = in.dtype();
    if (rank_ == _root) {
      GENERATE_FUNC(dtype, set_input, opts, in);
    }
    GENERATE_FUNC(dtype, set_output, opts, out);
207 208 209 210 211 212 213
    opts.setRoot(_root);
    opts.setTag(_tag);
    gloo::broadcast(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Broadcast(
L
lilong12 已提交
214 215
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, const BroadcastOptions& opts) {
216 217 218 219
  auto root = opts.source_rank;
  std::unique_ptr<BroadcastGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
L
lilong12 已提交
220 221
  task = std::make_unique<BroadcastGlooTask>(context, inputs, outputs, rank_,
                                             root, tag);
222 223 224 225 226 227 228
  task->Run();
  return task;
}

class AllreduceGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  AllreduceGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
229 230 231
                    std::vector<phi::DenseTensor>& inputs,   // NOLINT
                    std::vector<phi::DenseTensor>& outputs,  // NOLINT
                    ReduceOp reduce_op, uint32_t tag)
232 233 234
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::ALLREDUCE),
        _context(context),
        _inputs(inputs),
L
lilong12 已提交
235
        _outputs(outputs),
236 237 238
        _reduce_op(reduce_op),
        _tag(tag) {}

L
lilong12 已提交
239
  void Run() override { _do_allreduce(_inputs, _outputs); }
240 241 242

 private:
  std::shared_ptr<gloo::Context> _context;
L
lilong12 已提交
243 244
  std::vector<phi::DenseTensor> _inputs;
  std::vector<phi::DenseTensor> _outputs;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
  const ReduceOp _reduce_op;
  uint32_t _tag;

  gloo::AllreduceOptions::Func _get_function(const experimental::DataType type,
                                             const ReduceOp op) {
    gloo::AllreduceOptions::Func fn;
    GENERATE_FUNC(type, _get_function_impl, fn, op);
    return fn;
  }

  template <typename T>
  void _get_function_impl(gloo::AllreduceOptions::Func& fn,  // NOLINT
                          const ReduceOp op) {
    fn = get_function<T>(op);
  }

L
lilong12 已提交
261 262 263
  void _do_allreduce(std::vector<phi::DenseTensor>& ins,     // NOLINT
                     std::vector<phi::DenseTensor>& outs) {  // NOLINT
    const auto& dtype = ins[0].dtype();
264
    gloo::AllreduceOptions opts(_context);
L
lilong12 已提交
265 266
    GENERATE_FUNC(dtype, set_inputs, opts, ins);
    GENERATE_FUNC(dtype, set_outputs, opts, outs);
267 268 269 270 271 272 273
    opts.setReduceFunction(_get_function(dtype, _reduce_op));
    opts.setTag(_tag);
    gloo::allreduce(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllReduce(
L
lilong12 已提交
274 275
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, const AllreduceOptions& opts) {
276 277 278
  auto tag = next_tag();
  std::shared_ptr<GlooTask> task;
  auto context = get_context();
L
lilong12 已提交
279
  task = std::make_shared<AllreduceGlooTask>(rank_, context, inputs, outputs,
280 281 282 283 284
                                             opts.reduce_op, tag);
  task->Run();
  return task;
}

285 286 287
class BarrierGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  BarrierGlooTask(int rank, const std::shared_ptr<gloo::Context>& context)
L
lilong12 已提交
288
      : ProcessGroupGloo::GlooTask(rank, std::vector<phi::DenseTensor>{},
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
                                   CommType::BARRIER),
        _context(context) {}

  void Run() override { _do_barrier(); }

 private:
  std::shared_ptr<gloo::Context> _context;

  void _do_barrier() {
    gloo::BarrierOptions opts(_context);
    gloo::barrier(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Barrier(
    const BarrierOptions& opts) {
  std::shared_ptr<BarrierGlooTask> task;
  auto context = get_context();
  task = std::make_shared<BarrierGlooTask>(rank_, context);
  task->Run();
  return task;
}

class AllgatherGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  AllgatherGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
315 316
                    std::vector<phi::DenseTensor>& inputs,   // NOLINT
                    std::vector<phi::DenseTensor>& outputs,  // NOLINT
317 318 319 320 321 322 323 324 325 326 327
                    uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::ALLGATHER),
        _context(context),
        _inputs(inputs),
        _outputs(outputs),
        _tag(tag) {}

  void Run() override { _do_allgather(_inputs, _outputs); }

 private:
  std::shared_ptr<gloo::Context> _context;
L
lilong12 已提交
328 329
  std::vector<phi::DenseTensor> _inputs;
  std::vector<phi::DenseTensor> _outputs;
330 331
  uint32_t _tag;

L
lilong12 已提交
332 333 334
  void _do_allgather(std::vector<phi::DenseTensor>& in,     // NOLINT
                     std::vector<phi::DenseTensor>& out) {  // NOLINT
    const auto& dtype = in[0].dtype();
335 336 337 338 339 340 341 342 343
    gloo::AllgatherOptions opts(_context);
    GENERATE_FUNC(dtype, set_input, opts, in[0]);
    GENERATE_FUNC(dtype, set_output, opts, out[0]);
    opts.setTag(_tag);
    gloo::allgather(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllGather(
L
lilong12 已提交
344 345
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
346 347 348 349 350 351 352 353 354 355 356 357
  std::shared_ptr<AllgatherGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
  task = std::make_shared<AllgatherGlooTask>(rank_, context, in_tensors,
                                             out_tensors, tag);
  task->Run();
  return task;
}

class ReduceGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  ReduceGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
358 359 360 361
                 std::vector<phi::DenseTensor>& inputs,   // NOLINT
                 std::vector<phi::DenseTensor>& outputs,  // NOLINT
                 ReduceOp reduce_op, int dst, uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::REDUCE),
362
        _context(context),
L
lilong12 已提交
363 364
        _inputs(inputs),
        _outputs(outputs),
365 366 367 368
        _reduce_op(reduce_op),
        _dst(dst),
        _tag(tag) {}

L
lilong12 已提交
369
  void Run() override { _do_reduce(_inputs, _outputs, _dst); }
370 371 372

 private:
  std::shared_ptr<gloo::Context> _context;
L
lilong12 已提交
373 374
  std::vector<phi::DenseTensor> _inputs;
  std::vector<phi::DenseTensor> _outputs;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  const ReduceOp _reduce_op;
  int _dst;
  uint32_t _tag;

  gloo::ReduceOptions::Func _get_function(const experimental::DataType type,
                                          const ReduceOp op) {
    gloo::ReduceOptions::Func fn;
    GENERATE_FUNC(type, _get_function_impl, fn, op);
    return fn;
  }

  template <typename T>
  void _get_function_impl(gloo::ReduceOptions::Func& fn,  // NOLINT
                          const ReduceOp op) {
    fn = get_function<T>(op);
  }

L
lilong12 已提交
392 393 394 395
  void _do_reduce(std::vector<phi::DenseTensor>& inputs,   // NOLINT
                  std::vector<phi::DenseTensor>& outputs,  // NOLINT
                  int dst) {
    const auto& dtype = inputs[0].dtype();
396
    gloo::ReduceOptions opts(_context);
L
lilong12 已提交
397 398
    GENERATE_FUNC(dtype, set_input, opts, inputs[0]);
    GENERATE_FUNC(dtype, set_output, opts, outputs[0]);
399 400 401 402 403 404 405 406
    opts.setReduceFunction(_get_function(dtype, _reduce_op));
    opts.setTag(_tag);
    opts.setRoot(dst);
    gloo::reduce(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Reduce(
L
lilong12 已提交
407 408
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, const ReduceOptions& opts) {
409 410 411
  std::shared_ptr<ReduceGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
L
lilong12 已提交
412
  task = std::make_shared<ReduceGlooTask>(rank_, context, inputs, outputs,
413 414 415 416 417 418 419 420
                                          opts.reduce_op, opts.root_rank, tag);
  task->Run();
  return task;
}

class ScatterGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  ScatterGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
421 422
                  std::vector<phi::DenseTensor>& inputs,   // NOLINT
                  std::vector<phi::DenseTensor>& outputs,  // NOLINT
423 424 425 426 427 428 429 430 431 432 433 434 435
                  int src, int size, uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::SCATTER),
        _context(context),
        _inputs(inputs),
        _outputs(outputs),
        _src(src),
        _size(size),
        _tag(tag) {}

  void Run() override { _do_scatter(_inputs, _outputs, _src); }

 private:
  std::shared_ptr<gloo::Context> _context;
L
lilong12 已提交
436 437
  std::vector<phi::DenseTensor> _inputs;
  std::vector<phi::DenseTensor> _outputs;
438 439 440 441
  int _src;
  int _size;
  uint32_t _tag;

L
lilong12 已提交
442 443
  void _do_scatter(std::vector<phi::DenseTensor>& in,   // NOLINT
                   std::vector<phi::DenseTensor>& out,  // NOLINT
444
                   int src) {
L
lilong12 已提交
445
    const auto& dtype = in[0].dtype();
446 447
    gloo::ScatterOptions opts(_context);
    if (rank_ == src) {
L
lilong12 已提交
448
      GENERATE_FUNC(dtype, set_inputs_for_scatter, opts, in[0], _size);
449 450 451 452 453 454 455 456 457
    }
    GENERATE_FUNC(dtype, set_output, opts, out[0]);
    opts.setRoot(src);
    opts.setTag(_tag);
    gloo::scatter(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Scatter(
L
lilong12 已提交
458 459
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ScatterOptions& opts) {
460 461 462 463 464 465 466 467 468
  std::shared_ptr<ScatterGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
  task = std::make_shared<ScatterGlooTask>(
      rank_, context, in_tensors, out_tensors, opts.root_rank, size_, tag);
  task->Run();
  return task;
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDeviceForInterface(const std::string& ifname) {
  ::gloo::transport::tcp::attr attr;
  attr.iface = ifname;
  return ::gloo::transport::tcp::CreateDevice(attr);
}

std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDeviceForHostname(const std::string& hostname) {
  ::gloo::transport::tcp::attr attr;
  attr.hostname = hostname;
  return ::gloo::transport::tcp::CreateDevice(attr);
}

std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDefaultDevice() {
  std::array<char, HOST_NAME_MAX> hostname{};
  auto ret = ::gethostname(hostname.data(), HOST_NAME_MAX);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::Fatal(
                                "Get hostname error for createDefaultDevice."));
  ::addrinfo* result;
  result = tcputils::get_addr_info(hostname.data(), "", 0, AF_UNSPEC);
  ::addrinfo* cur;
  for (cur = result; cur != nullptr; cur = cur->ai_next) {
    SocketType socket =
        ::socket(cur->ai_family, cur->ai_socktype, cur->ai_protocol);
    if (socket == -1) {
      continue;
    }
    ret = ::bind(socket, cur->ai_addr, cur->ai_addrlen);
#ifdef _WIN32
    closesocket(socket);
#else
    close(socket);
#endif
    if (ret == -1) {
      continue;
    }
    break;
  }
  freeaddrinfo(result);
  if (cur != nullptr) {
    return createDeviceForHostname(hostname.data());
  }
  return createDeviceForHostname("127.0.0.1");
}

}  // namespace distributed
}  // namespace paddle