Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
5435459a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2310
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5435459a
编写于
3月 04, 2022
作者:
L
lilong12
提交者:
GitHub
3月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add communication api for ProcessGroupGloo (#40100)
* add pg_gloo apis
上级
03eb792d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
327 addition
and
32 deletion
+327
-32
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
+194
-0
paddle/fluid/distributed/collective/ProcessGroupGloo.h
paddle/fluid/distributed/collective/ProcessGroupGloo.h
+14
-0
paddle/fluid/distributed/store/tcp_store.cc
paddle/fluid/distributed/store/tcp_store.cc
+40
-28
python/paddle/fluid/tests/unittests/process_group_gloo.py
python/paddle/fluid/tests/unittests/process_group_gloo.py
+79
-4
未找到文件。
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
浏览文件 @
5435459a
...
...
@@ -25,6 +25,8 @@
#endif
#include <gloo/broadcast.h>
#include <gloo/reduce.h>
#include <gloo/scatter.h>
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -144,6 +146,22 @@ void set_inputs(P& opts, const std::vector<Tensor>& tensors) { // NOLINT
opts
.
setInputs
(
get_multi_data
<
T
>
(
tensors
),
tensors
[
0
].
numel
());
}
template
<
typename
T
,
typename
P
>
void
set_inputs_for_scatter
(
P
&
opts
,
// NOLINT
const
std
::
vector
<
Tensor
>&
tensors
,
// NOLINT
int
nranks
)
{
std
::
vector
<
T
*>
ret
(
nranks
);
auto
raw_tensor
=
std
::
dynamic_pointer_cast
<
phi
::
DenseTensor
>
(
tensors
[
0
].
impl
());
T
*
raw_pointer
=
reinterpret_cast
<
T
*>
(
raw_tensor
->
data
());
size_t
offset
=
0
;
for
(
int
i
=
0
;
i
<
nranks
;
i
++
)
{
ret
[
i
]
=
raw_pointer
+
offset
;
offset
+=
tensors
[
0
].
numel
()
/
nranks
;
}
opts
.
setInputs
(
ret
,
tensors
[
0
].
numel
()
/
nranks
);
}
ProcessGroupGloo
::
GlooTask
::
GlooTask
(
int
rank
,
const
std
::
vector
<
Tensor
>&
inputs
,
CommType
comm_type
)
...
...
@@ -257,6 +275,182 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllReduce(
return
task
;
}
class
BarrierGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
BarrierGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
std
::
vector
<
Tensor
>
{},
CommType
::
BARRIER
),
_context
(
context
)
{}
void
Run
()
override
{
_do_barrier
();
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
void
_do_barrier
()
{
gloo
::
BarrierOptions
opts
(
_context
);
gloo
::
barrier
(
opts
);
}
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Barrier
(
const
BarrierOptions
&
opts
)
{
std
::
shared_ptr
<
BarrierGlooTask
>
task
;
auto
context
=
get_context
();
task
=
std
::
make_shared
<
BarrierGlooTask
>
(
rank_
,
context
);
task
->
Run
();
return
task
;
}
class
AllgatherGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
AllgatherGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
ALLGATHER
),
_context
(
context
),
_inputs
(
inputs
),
_outputs
(
outputs
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_allgather
(
_inputs
,
_outputs
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
std
::
vector
<
Tensor
>
_outputs
;
uint32_t
_tag
;
void
_do_allgather
(
std
::
vector
<
Tensor
>&
in
,
// NOLINT
std
::
vector
<
Tensor
>&
out
)
{
// NOLINT
const
auto
&
dtype
=
in
[
0
].
type
();
gloo
::
AllgatherOptions
opts
(
_context
);
GENERATE_FUNC
(
dtype
,
set_input
,
opts
,
in
[
0
]);
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
out
[
0
]);
opts
.
setTag
(
_tag
);
gloo
::
allgather
(
opts
);
}
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
{
std
::
shared_ptr
<
AllgatherGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
task
=
std
::
make_shared
<
AllgatherGlooTask
>
(
rank_
,
context
,
in_tensors
,
out_tensors
,
tag
);
task
->
Run
();
return
task
;
}
class
ReduceGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
ReduceGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
in
,
ReduceOp
reduce_op
,
// NOLINT
int
dst
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
in
,
CommType
::
REDUCE
),
_context
(
context
),
_inputs
(
in
),
_reduce_op
(
reduce_op
),
_dst
(
dst
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_reduce
(
_inputs
,
_dst
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
const
ReduceOp
_reduce_op
;
int
_dst
;
uint32_t
_tag
;
gloo
::
ReduceOptions
::
Func
_get_function
(
const
experimental
::
DataType
type
,
const
ReduceOp
op
)
{
gloo
::
ReduceOptions
::
Func
fn
;
GENERATE_FUNC
(
type
,
_get_function_impl
,
fn
,
op
);
return
fn
;
}
template
<
typename
T
>
void
_get_function_impl
(
gloo
::
ReduceOptions
::
Func
&
fn
,
// NOLINT
const
ReduceOp
op
)
{
fn
=
get_function
<
T
>
(
op
);
}
void
_do_reduce
(
std
::
vector
<
Tensor
>&
tensors
,
int
dst
)
{
// NOLINT
const
auto
&
dtype
=
tensors
[
0
].
type
();
gloo
::
ReduceOptions
opts
(
_context
);
GENERATE_FUNC
(
dtype
,
set_input
,
opts
,
tensors
[
0
]);
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
tensors
[
0
]);
opts
.
setReduceFunction
(
_get_function
(
dtype
,
_reduce_op
));
opts
.
setTag
(
_tag
);
opts
.
setRoot
(
dst
);
gloo
::
reduce
(
opts
);
}
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
{
std
::
shared_ptr
<
ReduceGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
task
=
std
::
make_shared
<
ReduceGlooTask
>
(
rank_
,
context
,
tensors
,
opts
.
reduce_op
,
opts
.
root_rank
,
tag
);
task
->
Run
();
return
task
;
}
class
ScatterGlooTask
:
public
ProcessGroupGloo
::
GlooTask
{
public:
ScatterGlooTask
(
int
rank
,
const
std
::
shared_ptr
<
gloo
::
Context
>&
context
,
std
::
vector
<
Tensor
>&
inputs
,
// NOLINT
std
::
vector
<
Tensor
>&
outputs
,
// NOLINT
int
src
,
int
size
,
uint32_t
tag
)
:
ProcessGroupGloo
::
GlooTask
(
rank
,
inputs
,
CommType
::
SCATTER
),
_context
(
context
),
_inputs
(
inputs
),
_outputs
(
outputs
),
_src
(
src
),
_size
(
size
),
_tag
(
tag
)
{}
void
Run
()
override
{
_do_scatter
(
_inputs
,
_outputs
,
_src
);
}
private:
std
::
shared_ptr
<
gloo
::
Context
>
_context
;
std
::
vector
<
Tensor
>
_inputs
;
std
::
vector
<
Tensor
>
_outputs
;
int
_src
;
int
_size
;
uint32_t
_tag
;
void
_do_scatter
(
std
::
vector
<
Tensor
>&
in
,
std
::
vector
<
Tensor
>&
out
,
// NOLINT
int
src
)
{
const
auto
&
dtype
=
in
[
0
].
type
();
gloo
::
ScatterOptions
opts
(
_context
);
if
(
rank_
==
src
)
{
GENERATE_FUNC
(
dtype
,
set_inputs_for_scatter
,
opts
,
in
,
_size
);
}
GENERATE_FUNC
(
dtype
,
set_output
,
opts
,
out
[
0
]);
opts
.
setRoot
(
src
);
opts
.
setTag
(
_tag
);
gloo
::
scatter
(
opts
);
}
};
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
,
const
ScatterOptions
&
opts
)
{
std
::
shared_ptr
<
ScatterGlooTask
>
task
;
auto
tag
=
next_tag
();
auto
context
=
get_context
();
task
=
std
::
make_shared
<
ScatterGlooTask
>
(
rank_
,
context
,
in_tensors
,
out_tensors
,
opts
.
root_rank
,
size_
,
tag
);
task
->
Run
();
return
task
;
}
std
::
shared_ptr
<::
gloo
::
transport
::
Device
>
ProcessGroupGloo
::
createDeviceForInterface
(
const
std
::
string
&
ifname
)
{
::
gloo
::
transport
::
tcp
::
attr
attr
;
...
...
paddle/fluid/distributed/collective/ProcessGroupGloo.h
浏览文件 @
5435459a
...
...
@@ -114,6 +114,20 @@ class ProcessGroupGloo : public ProcessGroup {
std
::
vector
<
Tensor
>&
inputs
,
const
AllreduceOptions
&
opts
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllGather
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Reduce
(
std
::
vector
<
Tensor
>&
tensors
,
const
ReduceOptions
&
opts
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Scatter
(
std
::
vector
<
Tensor
>&
in_tensors
,
std
::
vector
<
Tensor
>&
out_tensors
,
const
ScatterOptions
&
)
override
;
std
::
shared_ptr
<::
gloo
::
Context
>
get_context
()
{
return
_context
;
}
uint64_t
next_tag
()
{
return
_tag
++
;
}
...
...
paddle/fluid/distributed/store/tcp_store.cc
浏览文件 @
5435459a
...
...
@@ -74,6 +74,7 @@ void MasterDaemon::_do_set(SocketType socket) {
}
void
MasterDaemon
::
_do_get
(
SocketType
socket
)
{
VLOG
(
3
)
<<
"MasterDaemon::_do_get"
;
std
::
string
key
=
tcputils
::
receive_string
(
socket
);
auto
iter
=
_store
.
find
(
key
);
PADDLE_ENFORCE_NE
(
...
...
@@ -86,13 +87,14 @@ void MasterDaemon::_do_get(SocketType socket) {
void
MasterDaemon
::
_do_stop
(
SocketType
socket
)
{
VLOG
(
3
)
<<
"MasterDaemon::_do_stop"
;
ReplyType
value
=
ReplyType
::
STOP_WAIT
;
tcputils
::
send_value
<
ReplyType
>
(
socket
,
value
);
if
(
--
_nranks
==
0
)
{
_stop
=
true
;
}
tcputils
::
send_value
<
ReplyType
>
(
socket
,
value
);
}
void
MasterDaemon
::
_do_wait
(
SocketType
socket
)
{
VLOG
(
3
)
<<
"MasterDaemon::_do_wait"
;
std
::
string
key
=
tcputils
::
receive_string
(
socket
);
auto
iter
=
_store
.
find
(
key
);
auto
reply
=
ReplyType
::
STOP_WAIT
;
...
...
@@ -134,32 +136,42 @@ void MasterDaemon::run() {
}
for
(
size_t
i
=
1
;
i
<
fds
.
size
();
i
++
)
{
if
(
fds
[
i
].
revents
==
0
)
{
continue
;
}
Command
command
=
tcputils
::
receive_value
<
Command
>
(
fds
[
i
].
fd
);
VLOG
(
3
)
<<
"TCPStore: recv command: "
<<
static_cast
<
int
>
(
command
)
<<
"."
;
switch
(
command
)
{
case
Command
::
ADD
:
_do_add
(
fds
[
i
].
fd
);
break
;
case
Command
::
GET
:
_do_get
(
fds
[
i
].
fd
);
break
;
case
Command
::
SET
:
_do_set
(
fds
[
i
].
fd
);
break
;
case
Command
::
WAIT
:
_do_wait
(
fds
[
i
].
fd
);
break
;
case
Command
::
STOP
:
_do_stop
(
fds
[
i
].
fd
);
break
;
default:
VLOG
(
0
)
<<
"Unknow command: "
<<
static_cast
<
int
>
(
command
);
exit
(
-
1
);
VLOG
(
0
)
<<
"fds.size:"
<<
fds
.
size
();
VLOG
(
0
)
<<
"fds.size-i:"
<<
i
;
VLOG
(
0
)
<<
"fds[i].revents:"
<<
fds
[
i
].
revents
;
try
{
if
(
fds
[
i
].
revents
==
0
)
{
continue
;
}
Command
command
=
tcputils
::
receive_value
<
Command
>
(
fds
[
i
].
fd
);
VLOG
(
3
)
<<
"TCPStore: recv command: "
<<
static_cast
<
int
>
(
command
)
<<
"."
;
switch
(
command
)
{
case
Command
::
ADD
:
_do_add
(
fds
[
i
].
fd
);
break
;
case
Command
::
GET
:
_do_get
(
fds
[
i
].
fd
);
break
;
case
Command
::
SET
:
_do_set
(
fds
[
i
].
fd
);
break
;
case
Command
::
WAIT
:
_do_wait
(
fds
[
i
].
fd
);
break
;
case
Command
::
STOP
:
_do_stop
(
fds
[
i
].
fd
);
break
;
default:
VLOG
(
0
)
<<
"Unknow command: "
<<
static_cast
<
int
>
(
command
);
exit
(
-
1
);
}
}
catch
(...)
{
fds
.
erase
(
fds
.
begin
()
+
i
);
_sockets
.
erase
(
_sockets
.
begin
()
+
i
-
1
);
}
}
}
...
...
@@ -281,8 +293,8 @@ void TCPStore::wait(const std::string& key) {
}
TCPStore
::~
TCPStore
()
{
_client
->
send_command_for_key
(
Command
::
STOP
,
""
);
VLOG
(
3
)
<<
"~TCPStore"
;
_client
->
send_command_for_key
(
Command
::
STOP
,
""
);
ReplyType
ret
=
_client
->
receive_value
<
ReplyType
>
();
PADDLE_ENFORCE_EQ
(
ret
,
ReplyType
::
STOP_WAIT
,
platform
::
errors
::
InvalidArgument
(
...
...
python/paddle/fluid/tests/unittests/process_group_gloo.py
浏览文件 @
5435459a
...
...
@@ -104,16 +104,91 @@ class TestProcessGroupFp32(unittest.TestCase):
broadcast_result
=
paddle
.
assign
(
tensor_x
)
if
rank
==
0
:
task
=
pg
.
broadcast
(
tensor_x
,
0
)
task
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_x
)
else
:
task
=
pg
.
broadcast
(
tensor_y
,
0
)
task
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_y
)
print
(
"test broadcast api ok"
)
# test barrier
# rank 0
if
pg
.
rank
()
==
0
:
task
=
pg
.
barrier
()
task
.
wait
()
# rank 1
else
:
task
=
pg
.
barrier
()
task
.
wait
()
print
(
"test barrier api ok
\n
"
)
# test allgather
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
out_shape
=
list
(
self
.
shape
)
out_shape
[
0
]
*=
2
out
=
np
.
random
.
random
(
out_shape
).
astype
(
self
.
dtype
)
tensor_out
=
paddle
.
to_tensor
(
out
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
all_gather
(
tensor_x
,
tensor_out
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
all_gather
(
tensor_y
,
tensor_out
)
task
.
wait
()
out_1
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
0
],
[
out_shape
[
0
]
//
2
])
out_2
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
out_shape
[
0
]
//
2
],
[
out_shape
[
0
]])
assert
np
.
array_equal
(
tensor_x
,
out_1
)
assert
np
.
array_equal
(
tensor_y
,
out_2
)
print
(
"test allgather api ok
\n
"
)
# test Reduce
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
pg
.
reduce
(
tensor_x
,
0
)
task
.
wait
()
# rank 1
else
:
task
=
pg
.
reduce
(
tensor_y
,
0
)
task
.
wait
()
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
print
(
"test reduce sum api ok
\n
"
)
# test Scatter
# rank 0
in_shape
=
list
(
self
.
shape
)
in_shape
[
0
]
*=
2
x
=
np
.
random
.
random
(
in_shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
# rank 1
else
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
out1
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
0
],
[
self
.
shape
[
0
]])
out2
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
self
.
shape
[
0
]],
[
self
.
shape
[
0
]
*
2
])
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_y
,
out1
)
else
:
assert
np
.
array_equal
(
tensor_y
,
out2
)
print
(
"test scatter api ok
\n
"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录