movielens.py 7.2 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16
"""
Movielens 1-M dataset.

Q
qijun 已提交
17 18 19
Movielens 1-M dataset contains 1 million ratings from 6000 users on 4000
movies, which was collected by GroupLens Research. This module will download
Movielens 1-M dataset from 
Q
qijun 已提交
20 21
http://files.grouplens.org/datasets/movielens/ml-1m.zip and parse training
set and test set into paddle reader creators.
Q
qijun 已提交
22

Y
Yu Yang 已提交
23
"""
D
dangqingqing 已提交
24

Y
Yu Yang 已提交
25
import zipfile
R
root 已提交
26
import paddle.v2.dataset.common
Y
Yu Yang 已提交
27 28 29 30
import re
import random
import functools

Y
Refine  
Yu Yang 已提交
31 32
__all__ = [
    'train', 'test', 'get_movie_title_dict', 'max_movie_id', 'max_user_id',
Y
Yu Yang 已提交
33
    'age_table', 'movie_categories', 'max_job_id', 'user_info', 'movie_info'
Y
Refine  
Yu Yang 已提交
34 35 36
]

age_table = [1, 18, 25, 35, 45, 50, 56]
Y
Yu Yang 已提交
37

Y
Yancey1989 已提交
38 39 40
URL = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
MD5 = 'c4d9eecfca2ab87c1945afe126590906'

Y
Yu Yang 已提交
41 42

class MovieInfo(object):
Q
qijun 已提交
43 44 45
    """
    Movie id, title and categories information are stored in MovieInfo.
    """
Q
qijun 已提交
46

Y
Yu Yang 已提交
47 48 49 50 51 52
    def __init__(self, index, categories, title):
        self.index = int(index)
        self.categories = categories
        self.title = title

    def value(self):
Q
qijun 已提交
53
        """
Q
qijun 已提交
54
        Get information from a movie.
Q
qijun 已提交
55
        """
Y
Yu Yang 已提交
56 57 58 59 60
        return [
            self.index, [CATEGORIES_DICT[c] for c in self.categories],
            [MOVIE_TITLE_DICT[w.lower()] for w in self.title.split()]
        ]

Y
Yu Yang 已提交
61 62 63 64 65 66 67
    def __str__(self):
        return "<MovieInfo id(%d), title(%s), categories(%s)>" % (
            self.index, self.title, self.categories)

    def __repr__(self):
        return self.__str__()

Y
Yu Yang 已提交
68 69

class UserInfo(object):
Q
qijun 已提交
70 71 72
    """
    User id, gender, age, and job information are stored in UserInfo.
    """
Q
qijun 已提交
73

Y
Yu Yang 已提交
74 75 76
    def __init__(self, index, gender, age, job_id):
        self.index = int(index)
        self.is_male = gender == 'M'
Y
Refine  
Yu Yang 已提交
77
        self.age = age_table.index(int(age))
Y
Yu Yang 已提交
78 79 80
        self.job_id = int(job_id)

    def value(self):
Q
qijun 已提交
81
        """
Q
qijun 已提交
82
        Get information from a user.
Q
qijun 已提交
83
        """
Y
Yu Yang 已提交
84 85
        return [self.index, 0 if self.is_male else 1, self.age, self.job_id]

Y
Yu Yang 已提交
86 87 88 89 90 91 92 93
    def __str__(self):
        return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % (
            self.index, "M"
            if self.is_male else "F", age_table[self.age], self.job_id)

    def __repr__(self):
        return str(self)

Y
Yu Yang 已提交
94 95 96 97 98 99 100 101

MOVIE_INFO = None
MOVIE_TITLE_DICT = None
CATEGORIES_DICT = None
USER_INFO = None


def __initialize_meta_info__():
R
root 已提交
102
    fn = paddle.v2.dataset.common.download(URL, "movielens", MD5)
Y
Yu Yang 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    global MOVIE_INFO
    if MOVIE_INFO is None:
        pattern = re.compile(r'^(.*)\((\d+)\)$')
        with zipfile.ZipFile(file=fn) as package:
            for info in package.infolist():
                assert isinstance(info, zipfile.ZipInfo)
                MOVIE_INFO = dict()
                title_word_set = set()
                categories_set = set()
                with package.open('ml-1m/movies.dat') as movie_file:
                    for i, line in enumerate(movie_file):
                        movie_id, title, categories = line.strip().split('::')
                        categories = categories.split('|')
                        for c in categories:
                            categories_set.add(c)
                        title = pattern.match(title).group(1)
                        MOVIE_INFO[int(movie_id)] = MovieInfo(
                            index=movie_id, categories=categories, title=title)
                        for w in title.split():
                            title_word_set.add(w.lower())

                global MOVIE_TITLE_DICT
                MOVIE_TITLE_DICT = dict()
                for i, w in enumerate(title_word_set):
                    MOVIE_TITLE_DICT[w] = i

                global CATEGORIES_DICT
                CATEGORIES_DICT = dict()
                for i, c in enumerate(categories_set):
                    CATEGORIES_DICT[c] = i

                global USER_INFO
                USER_INFO = dict()
                with package.open('ml-1m/users.dat') as user_file:
                    for line in user_file:
                        uid, gender, age, job, _ = line.strip().split("::")
                        USER_INFO[int(uid)] = UserInfo(
                            index=uid, gender=gender, age=age, job_id=job)
    return fn


def __reader__(rand_seed=0, test_ratio=0.1, is_test=False):
    fn = __initialize_meta_info__()
    rand = random.Random(x=rand_seed)
    with zipfile.ZipFile(file=fn) as package:
        with package.open('ml-1m/ratings.dat') as rating:
            for line in rating:
                if (rand.random() < test_ratio) == is_test:
                    uid, mov_id, rating, _ = line.strip().split("::")
                    uid = int(uid)
                    mov_id = int(mov_id)
                    rating = float(rating) * 2 - 5.0

                    mov = MOVIE_INFO[mov_id]
                    usr = USER_INFO[uid]
                    yield usr.value() + mov.value() + [[rating]]


def __reader_creator__(**kwargs):
    return lambda: __reader__(**kwargs)


Y
Refine  
Yu Yang 已提交
165 166
train = functools.partial(__reader_creator__, is_test=False)
test = functools.partial(__reader_creator__, is_test=True)
Y
Yu Yang 已提交
167 168


Y
Yu Yang 已提交
169
def get_movie_title_dict():
Q
qijun 已提交
170 171 172
    """
    Get movie title dictionary.
    """
Y
Yu Yang 已提交
173 174 175 176
    __initialize_meta_info__()
    return MOVIE_TITLE_DICT


Y
Refine  
Yu Yang 已提交
177 178 179 180 181 182 183 184
def __max_index_info__(a, b):
    if a.index > b.index:
        return a
    else:
        return b


def max_movie_id():
Q
qijun 已提交
185 186 187
    """
    Get the maximum value of movie id.
    """
Y
Refine  
Yu Yang 已提交
188 189 190 191 192
    __initialize_meta_info__()
    return reduce(__max_index_info__, MOVIE_INFO.viewvalues()).index


def max_user_id():
Q
qijun 已提交
193 194 195
    """
    Get the maximum value of user id.
    """
Y
Refine  
Yu Yang 已提交
196 197 198 199
    __initialize_meta_info__()
    return reduce(__max_index_info__, USER_INFO.viewvalues()).index


Y
Yu Yang 已提交
200 201 202 203 204 205 206 207
def __max_job_id_impl__(a, b):
    if a.job_id > b.job_id:
        return a
    else:
        return b


def max_job_id():
Q
qijun 已提交
208 209 210
    """
    Get the maximum value of job id.
    """
Y
Yu Yang 已提交
211 212 213 214 215
    __initialize_meta_info__()
    return reduce(__max_job_id_impl__, USER_INFO.viewvalues()).job_id


def movie_categories():
Q
qijun 已提交
216 217 218
    """
    Get movie categoriges dictionary.
    """
Y
Yu Yang 已提交
219 220 221 222
    __initialize_meta_info__()
    return CATEGORIES_DICT


Y
Yu Yang 已提交
223
def user_info():
Q
qijun 已提交
224 225 226
    """
    Get user info dictionary.
    """
Y
Yu Yang 已提交
227 228 229 230 231
    __initialize_meta_info__()
    return USER_INFO


def movie_info():
Q
qijun 已提交
232 233 234
    """
    Get movie info dictionary.
    """
Y
Yu Yang 已提交
235 236 237 238
    __initialize_meta_info__()
    return MOVIE_INFO


Y
Yu Yang 已提交
239
def unittest():
Y
Refine  
Yu Yang 已提交
240
    for train_count, _ in enumerate(train()()):
Y
Yu Yang 已提交
241
        pass
Y
Refine  
Yu Yang 已提交
242
    for test_count, _ in enumerate(test()()):
Y
Yu Yang 已提交
243 244 245 246 247
        pass

    print train_count, test_count


248
def fetch():
R
root 已提交
249 250 251 252 253 254 255 256 257
    paddle.v2.dataset.common.download(URL, "movielens", MD5)


def convert(path):
    """
    Converts dataset to recordio format
    """
    paddle.v2.dataset.common.convert(path, train(), 10, "movielens_train")
    paddle.v2.dataset.common.convert(path, test(), 10, "movielens_test")
Y
Yancey1989 已提交
258 259


Y
Yu Yang 已提交
260 261
if __name__ == '__main__':
    unittest()