movielens.py 6.2 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16
"""
Movielens 1-M dataset.

Q
qijun 已提交
17 18 19 20
GroupLens Research collected and made available rating data sets from the 
MovieLens web site (http://movielens.org). Movielens 1-M dataset contains 1 million 
ratings from 6000 users on 4000 movies. 

Y
Yu Yang 已提交
21 22
TODO(yuyang18): Complete comments.
"""
D
dangqingqing 已提交
23

Y
Yu Yang 已提交
24
import zipfile
王益 已提交
25
from common import download
Y
Yu Yang 已提交
26 27 28 29
import re
import random
import functools

Y
Refine  
Yu Yang 已提交
30 31
__all__ = [
    'train', 'test', 'get_movie_title_dict', 'max_movie_id', 'max_user_id',
Y
Yu Yang 已提交
32
    'age_table', 'movie_categories', 'max_job_id', 'user_info', 'movie_info'
Y
Refine  
Yu Yang 已提交
33 34 35
]

age_table = [1, 18, 25, 35, 45, 50, 56]
Y
Yu Yang 已提交
36

Y
Yancey1989 已提交
37 38 39
URL = 'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
MD5 = 'c4d9eecfca2ab87c1945afe126590906'

Y
Yu Yang 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52

class MovieInfo(object):
    def __init__(self, index, categories, title):
        self.index = int(index)
        self.categories = categories
        self.title = title

    def value(self):
        return [
            self.index, [CATEGORIES_DICT[c] for c in self.categories],
            [MOVIE_TITLE_DICT[w.lower()] for w in self.title.split()]
        ]

Y
Yu Yang 已提交
53 54 55 56 57 58 59
    def __str__(self):
        return "<MovieInfo id(%d), title(%s), categories(%s)>" % (
            self.index, self.title, self.categories)

    def __repr__(self):
        return self.__str__()

Y
Yu Yang 已提交
60 61 62 63 64

class UserInfo(object):
    def __init__(self, index, gender, age, job_id):
        self.index = int(index)
        self.is_male = gender == 'M'
Y
Refine  
Yu Yang 已提交
65
        self.age = age_table.index(int(age))
Y
Yu Yang 已提交
66 67 68 69 70
        self.job_id = int(job_id)

    def value(self):
        return [self.index, 0 if self.is_male else 1, self.age, self.job_id]

Y
Yu Yang 已提交
71 72 73 74 75 76 77 78
    def __str__(self):
        return "<UserInfo id(%d), gender(%s), age(%d), job(%d)>" % (
            self.index, "M"
            if self.is_male else "F", age_table[self.age], self.job_id)

    def __repr__(self):
        return str(self)

Y
Yu Yang 已提交
79 80 81 82 83 84 85 86

MOVIE_INFO = None
MOVIE_TITLE_DICT = None
CATEGORIES_DICT = None
USER_INFO = None


def __initialize_meta_info__():
Y
Yancey1989 已提交
87
    fn = download(URL, "movielens", MD5)
Y
Yu Yang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    global MOVIE_INFO
    if MOVIE_INFO is None:
        pattern = re.compile(r'^(.*)\((\d+)\)$')
        with zipfile.ZipFile(file=fn) as package:
            for info in package.infolist():
                assert isinstance(info, zipfile.ZipInfo)
                MOVIE_INFO = dict()
                title_word_set = set()
                categories_set = set()
                with package.open('ml-1m/movies.dat') as movie_file:
                    for i, line in enumerate(movie_file):
                        movie_id, title, categories = line.strip().split('::')
                        categories = categories.split('|')
                        for c in categories:
                            categories_set.add(c)
                        title = pattern.match(title).group(1)
                        MOVIE_INFO[int(movie_id)] = MovieInfo(
                            index=movie_id, categories=categories, title=title)
                        for w in title.split():
                            title_word_set.add(w.lower())

                global MOVIE_TITLE_DICT
                MOVIE_TITLE_DICT = dict()
                for i, w in enumerate(title_word_set):
                    MOVIE_TITLE_DICT[w] = i

                global CATEGORIES_DICT
                CATEGORIES_DICT = dict()
                for i, c in enumerate(categories_set):
                    CATEGORIES_DICT[c] = i

                global USER_INFO
                USER_INFO = dict()
                with package.open('ml-1m/users.dat') as user_file:
                    for line in user_file:
                        uid, gender, age, job, _ = line.strip().split("::")
                        USER_INFO[int(uid)] = UserInfo(
                            index=uid, gender=gender, age=age, job_id=job)
    return fn


def __reader__(rand_seed=0, test_ratio=0.1, is_test=False):
    fn = __initialize_meta_info__()
    rand = random.Random(x=rand_seed)
    with zipfile.ZipFile(file=fn) as package:
        with package.open('ml-1m/ratings.dat') as rating:
            for line in rating:
                if (rand.random() < test_ratio) == is_test:
                    uid, mov_id, rating, _ = line.strip().split("::")
                    uid = int(uid)
                    mov_id = int(mov_id)
                    rating = float(rating) * 2 - 5.0

                    mov = MOVIE_INFO[mov_id]
                    usr = USER_INFO[uid]
                    yield usr.value() + mov.value() + [[rating]]


def __reader_creator__(**kwargs):
    return lambda: __reader__(**kwargs)


Y
Refine  
Yu Yang 已提交
150 151
train = functools.partial(__reader_creator__, is_test=False)
test = functools.partial(__reader_creator__, is_test=True)
Y
Yu Yang 已提交
152 153


Y
Yu Yang 已提交
154 155 156 157 158
def get_movie_title_dict():
    __initialize_meta_info__()
    return MOVIE_TITLE_DICT


Y
Refine  
Yu Yang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
def __max_index_info__(a, b):
    if a.index > b.index:
        return a
    else:
        return b


def max_movie_id():
    __initialize_meta_info__()
    return reduce(__max_index_info__, MOVIE_INFO.viewvalues()).index


def max_user_id():
    __initialize_meta_info__()
    return reduce(__max_index_info__, USER_INFO.viewvalues()).index


Y
Yu Yang 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
def __max_job_id_impl__(a, b):
    if a.job_id > b.job_id:
        return a
    else:
        return b


def max_job_id():
    __initialize_meta_info__()
    return reduce(__max_job_id_impl__, USER_INFO.viewvalues()).job_id


def movie_categories():
    __initialize_meta_info__()
    return CATEGORIES_DICT


Y
Yu Yang 已提交
193 194 195 196 197 198 199 200 201 202
def user_info():
    __initialize_meta_info__()
    return USER_INFO


def movie_info():
    __initialize_meta_info__()
    return MOVIE_INFO


Y
Yu Yang 已提交
203
def unittest():
Y
Refine  
Yu Yang 已提交
204
    for train_count, _ in enumerate(train()()):
Y
Yu Yang 已提交
205
        pass
Y
Refine  
Yu Yang 已提交
206
    for test_count, _ in enumerate(test()()):
Y
Yu Yang 已提交
207 208 209 210 211
        pass

    print train_count, test_count


212 213
def fetch():
    download(URL, "movielens", MD5)
Y
Yancey1989 已提交
214 215


Y
Yu Yang 已提交
216 217
if __name__ == '__main__':
    unittest()