ConvOpTest.cpp 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"

namespace paddle {

22
enum TestType {
H
hedaoyuan 已提交
23 24 25
  kForwardTest = 0,
  kBackwardInputTest = 1,
  kBackwardFilterTest = 2,
26 27
};

28
template <DeviceType DType1, DeviceType DType2>
29 30 31 32
class ConvolutionTest {
public:
  ConvolutionTest(const std::string& conv1,
                  const std::string& conv2,
33
                  TestType type,
34 35 36 37 38 39 40 41 42 43 44 45
                  std::string algo = "auto") {
    for (size_t batchSize : {1, 32}) {
      for (size_t inputSize : {7, 14, 54}) {
        for (size_t filterSize : {1, 3, 5}) {
          for (size_t inputChannels : {3, 64}) {
            for (size_t outputChannels : {3, 64, 128}) {
              if (inputChannels < outputChannels) break;
              for (size_t stride : {1, 2}) {
                for (size_t padding : {0, 1}) {
                  if (padding >= filterSize) break;
                  size_t outputSize =
                      (inputSize - filterSize + 2 * padding + stride) / stride;
H
hedaoyuan 已提交
46 47 48 49 50 51 52 53 54 55
                  VLOG(3) << " batchSize=" << batchSize
                          << " inputChannels=" << inputChannels
                          << " inputHeight=" << inputSize
                          << " inputWidth=" << inputSize
                          << " outputChannels=" << outputChannels
                          << " filterHeight=" << filterSize
                          << " filterWidth=" << filterSize
                          << " outputHeight=" << outputSize
                          << " outputWidth=" << outputSize
                          << " stride=" << stride << " padding=" << padding;
56

57 58
                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
59 60 61 62 63 64 65 66
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
                          .set("groups", (size_t)1)
                          .set("algo", algo));
67

68
                  TensorShape input{
69
                      batchSize, inputChannels, inputSize, inputSize};
70
                  TensorShape filter{
71
                      outputChannels, inputChannels, filterSize, filterSize};
72
                  TensorShape output{
73
                      batchSize, outputChannels, outputSize, outputSize};
74

H
hedaoyuan 已提交
75
                  if (type == kForwardTest) {
76 77 78 79
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
H
hedaoyuan 已提交
80
                  } else if (type == kBackwardInputTest) {
81 82
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
H
hedaoyuan 已提交
83
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
84
                    test.run();
H
hedaoyuan 已提交
85
                  } else if (type == kBackwardFilterTest) {
86 87 88 89 90
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.run();
                  }
91 92 93 94 95 96 97 98 99 100
                }
              }
            }
          }
        }
      }
    }
  }
};

101 102
TEST(Forward, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
H
hedaoyuan 已提交
103
      "NaiveConv-CPU", "GemmConv-CPU", kForwardTest);
104 105
}

H
Bug fix  
hedaoyuan 已提交
106
#ifndef PADDLE_ONLY_CPU
107 108
TEST(Forward, GEMM2) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
H
hedaoyuan 已提交
109
      "GemmConv-CPU", "GemmConv-GPU", kForwardTest);
110 111
}

112 113
TEST(BackwardInput, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
H
hedaoyuan 已提交
114
      "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", kBackwardInputTest);
115 116
}

117 118
TEST(BackwardFilter, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
H
hedaoyuan 已提交
119
      "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", kBackwardFilterTest);
120
}
H
Bug fix  
hedaoyuan 已提交
121
#endif
122 123

}  // namespace paddle