parallel.py 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import warnings
17 18
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
19
import time
20
import paddle
21 22 23

# deprecated module import
from paddle.fluid import core
L
lilong12 已提交
24
from paddle.fluid.framework import in_dygraph_mode
25 26
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
27
from paddle.distributed.fleet.launch_utils import check_backend
28
from paddle.fluid.dygraph.parallel import ParallelEnv
29 30 31
from paddle.distributed.fleet.base.private_helper_function import (
    wait_server_ready,
)  # noqa: F401
L
lilong12 已提交
32 33 34
from paddle.distributed.collective import _set_group_map
from paddle.distributed.collective import _set_group_map_by_name
from paddle.distributed.collective import _get_group_map_by_name
35 36
from paddle.distributed.collective import _default_group_name
from paddle.distributed.collective import _valid_backend_list
L
lilong12 已提交
37 38
from paddle.distributed.collective import _set_default_backend
from paddle.distributed.collective import _set_default_store
39 40
from paddle.distributed.collective import _new_process_group_impl
from paddle.distributed.collective import Group
41
from paddle.distributed.collective import _set_group_map_backend
42
from paddle.distributed.communication.group import _add_new_group
43

44
__all__ = []
45 46 47

ParallelStrategy = core.ParallelStrategy

48
# NOTE(chenweihang): Maintain a global parallel env to avoid
49 50 51 52 53 54 55 56 57 58
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

59

60
def _start_kv_server(port, http_server_d, size):
61
    from paddle.distributed.fleet.utils.http_server import KVServer
62

63
    http_server = KVServer(int(port), size=size)
64
    http_server.start()
65
    wait_seconds = 3
L
lilong12 已提交
66
    while http_server_d.get("running", False) or not http_server.should_stop():
67 68 69 70
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
71 72
def _is_cpuonly(backend):
    check_backend(backend)
73 74 75 76 77 78 79 80 81
    if (
        backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl']
        and (
            core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu()
            or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()
        )
    ) or backend == 'xccl':
82

83 84 85 86 87 88
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
89 90 91
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
92 93 94 95
        raise ValueError(
            "paddle.distributed initialize error, "
            "environment variable %s is needed, but not set." % var_name
        )
K
kuizhiqing 已提交
96 97


X
xiongkun 已提交
98
def init_parallel_env():
99
    """
100

101
    Initialize parallel training environment in dynamic graph mode.
102

103
    Note:
104
        Now initialize both `NCCL` and `GLOO` contexts for communication.
105

106 107 108 109 110
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

111 112
    Returns:
        None
113

114 115
    Examples:
        .. code-block:: python
116

117
            # required: gpu
118 119 120 121 122 123 124
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
125
                    super().__init__()
126 127
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
128

129 130 131 132
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
133
                # 1. initialize parallel environment
134 135
                dist.init_parallel_env()

136
                # 2. create data parallel layer & optimizer
137 138 139 140 141 142 143
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

144
                # 3. run layer
145 146 147 148
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
149

150 151 152 153 154 155 156
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
157

158 159
    """

160 161 162 163 164 165 166 167 168 169 170
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
171
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
172
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
173 174
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
175
    # 1. gpu xpu check, must be gpu or xpu,
176 177 178 179 180 181
    if not (
        is_cpu_only
        or core.is_compiled_with_cuda()
        or core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_mlu()
S
shentanyue 已提交
182
        or backend == "xccl"
183
    ):
184
        raise NotImplementedError(
185 186
            "If you want to use CPU-only version, please use 'gloo' as backend"
        )
187

188 189
    if backend == "xccl":
        FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
190 191
            parallel_env.device_type
        )
192 193 194 195 196 197 198 199 200 201 202 203 204 205
        _check_var_exists(FLAGS_selected_custom_devices)
    else:
        if not is_cpu_only and core.is_compiled_with_cuda():
            _check_var_exists("FLAGS_selected_gpus")
            backend = "nccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_xpu():
            _check_var_exists('FLAGS_selected_xpus')
            backend = "bkcl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_npu():
            _check_var_exists('FLAGS_selected_npus')
            backend = "hccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_mlu():
            _check_var_exists('FLAGS_selected_mlus')
            backend = "cncl" if backend == "auto" else backend
206

207 208 209 210 211
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

212 213 214 215 216 217
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
218
    if backend == "xccl":
219 220 221
        place = core.CustomPlace(
            parallel_env.device_type, parallel_env.device_id
        )
222
    elif is_cpu_only:
223 224 225 226 227 228 229 230 231 232 233 234 235
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
L
lilong12 已提交
236 237 238 239
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
240 241 242 243 244
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
245 246
            "required to create a process group."
        )
247 248
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
249 250 251 252 253
        endpoints = (
            ":".join([master_addr, master_port])
            if master_addr and master_port
            else None
        )
254
        if endpoints is None:
255 256 257 258 259 260 261
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
262 263
            "with paddle.distributed.run module."
        )
264 265 266
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
267
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
268 269 270 271 272 273 274
        default_store = core.TCPStore(
            master_addr,
            master_port,
            is_master,
            world_size,
            timeout=stop_check_timeout,
        )
L
lilong12 已提交
275
        _set_default_store(default_store)
276 277 278 279 280 281 282 283
        pg = _new_process_group_impl(
            backend,
            default_store,
            rank,
            world_size,
            _default_group_name,
            pg_options=None,
        )
284
        ranks = list(range(world_size))
285
        group = Group(rank, 0, ranks, pg=pg, name=_default_group_name)
L
lilong12 已提交
286 287
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
288
        _set_group_map_backend(group, backend)
289
        _add_new_group(group)
290
        parallel_helper._set_parallel_ctx(True)
291 292

        paddle.distributed.barrier(group=group)
293 294
        return group

K
kuizhiqing 已提交
295
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
296
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
297
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
298
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
299 300 301 302 303 304 305 306
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
307 308
            if backend == "heter":
                size = {'_worker': len(node_num)}
309 310 311 312
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size),
            )
L
lilong12 已提交
313 314 315
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
316 317

    # 4. init NCCL ParallelStrategy
318
    strategy = ParallelStrategy()
319 320
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
321 322 323 324
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
325
    strategy.nrings = parallel_env.nrings
326

K
kuizhiqing 已提交
327
    # init nccl or hccl or bkcl or heter context
328 329
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
330 331 332
            core.GLOOParallelContext(strategy, place)
        )
    elif backend == "heter":
K
kuizhiqing 已提交
333
        parallel_helper._set_parallel_ctx(
334 335
            core.HeterParallelContext(strategy, parallel_env.device_id)
        )
336
    elif core.is_compiled_with_cuda():
337
        parallel_helper._set_parallel_ctx(
338 339
            core.NCCLParallelContext(strategy, place)
        )
340 341
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
342 343
            core.BKCLParallelContext(strategy, place)
        )
344 345
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
346 347
            core.HCCLParallelContext(strategy, place)
        )
348 349
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
350 351
            core.CNCLParallelContext(strategy, place)
        )
352

K
kuizhiqing 已提交
353 354 355 356 357
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
358

359
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
360

361 362 363 364
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
365
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
366
        # compare to init_gloo, we don't need to
367 368 369
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
370

371 372
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
387
    return group
388

389

L
LiYuRio 已提交
390
def get_rank(group=None):
391
    """
L
LiYuRio 已提交
392 393
    Returns the rank of current trainer in the given group, ranks are consecutive integers in [0, ``world_size``).
    If none of the group is given, the global group will be used as default.
394

L
LiYuRio 已提交
395 396
    Args:
        group (Group, optional): The communication group you want to get rank of current trainer, use global group as default if group is None.
397 398

    Returns:
L
LiYuRio 已提交
399 400 401 402
        (int) The rank of current trainer in the given group. Return -1 if the process is not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
403 404 405 406

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
407
            # Execute this script using distributed launch with one card configs.
408 409 410
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
411
            dist.init_parallel_env()
412 413 414
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
L
LiYuRio 已提交
415 416 417 418
    if in_dygraph_mode() and group:
        return group.rank

    assert group is None, "Only support group argument in eager mode."
419
    return _get_global_parallel_env().rank
420 421


L
LiYuRio 已提交
422
def get_world_size(group=None):
423
    """
L
LiYuRio 已提交
424 425
    Returns the number of trainers (number of processes participating in current job) in the given group.
    If none of the group is given, the global group will be used as default.
426

L
LiYuRio 已提交
427 428
    Args:
        group (Group, optional): The communication group you want to check world size, use global group as default if group is None.
429 430

    Returns:
L
LiYuRio 已提交
431 432 433 434
        (int) The number of trainers in the given group. Return -1 if the process if not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
435 436 437 438

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
439
            # Execute this script using distributed launch with one card configs.
440 441 442
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
443
            dist.init_parallel_env()
444
            print("The world_size is %d" % dist.get_world_size())
L
LiYuRio 已提交
445
            # The world_size is 1
446
    """
L
LiYuRio 已提交
447 448 449 450
    if in_dygraph_mode() and group:
        return group.world_size

    assert group is None, "Only support group argument in eager mode."
451
    return _get_global_parallel_env().world_size