Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a0dffd39
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a0dffd39
编写于
10月 10, 2022
作者:
L
LiYuRio
提交者:
GitHub
10月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move group and all reduce from collective to communication (#45848)
上级
45b93325
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
277 addition
and
185 deletion
+277
-185
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
+8
-0
paddle/fluid/distributed/collective/ProcessGroupGloo.h
paddle/fluid/distributed/collective/ProcessGroupGloo.h
+6
-0
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+11
-162
python/paddle/distributed/communication/all_reduce.py
python/paddle/distributed/communication/all_reduce.py
+87
-0
python/paddle/distributed/communication/group.py
python/paddle/distributed/communication/group.py
+94
-0
python/paddle/distributed/communication/reduce.py
python/paddle/distributed/communication/reduce.py
+27
-1
python/paddle/distributed/communication/stream/all_reduce.py
python/paddle/distributed/communication/stream/all_reduce.py
+38
-12
python/paddle/distributed/fleet/base/topology.py
python/paddle/distributed/fleet/base/topology.py
+2
-2
python/paddle/distributed/fleet/layers/mpu/mp_ops.py
python/paddle/distributed/fleet/layers/mpu/mp_ops.py
+1
-1
python/paddle/distributed/parallel.py
python/paddle/distributed/parallel.py
+3
-6
python/paddle/incubate/distributed/models/moe/moe_layer.py
python/paddle/incubate/distributed/models/moe/moe_layer.py
+0
-1
未找到文件。
paddle/fluid/distributed/collective/ProcessGroupGloo.cc
浏览文件 @
a0dffd39
...
...
@@ -293,6 +293,14 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllReduce(
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
AllreduceOptions
&
opts
)
{
return
AllReduce
(
inputs
,
outputs
,
opts
,
true
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupGloo
::
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
AllreduceOptions
&
opts
,
bool
sync_op
)
{
auto
tag
=
next_tag
();
std
::
shared_ptr
<
GlooTask
>
task
;
auto
context
=
get_context
();
...
...
paddle/fluid/distributed/collective/ProcessGroupGloo.h
浏览文件 @
a0dffd39
...
...
@@ -120,6 +120,12 @@ class ProcessGroupGloo : public ProcessGroup {
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
AllreduceOptions
&
opts
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
const
AllreduceOptions
&
opts
,
bool
sync_op
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Barrier
(
const
BarrierOptions
&
=
BarrierOptions
())
override
;
...
...
python/paddle/distributed/collective.py
浏览文件 @
a0dffd39
...
...
@@ -52,54 +52,12 @@ from .fleet.layers.mpu.mp_ops import _c_softmax_with_cross_entropy
from
.fleet.layers.mpu.mp_ops
import
_linear
from
.fleet.layers.mpu.mp_ops
import
_parallel_linear
from
.fleet.layers.mpu.mp_ops
import
_parallel_embedding
from
.communication.comm_utils
import
ReduceOp
from
.communication.group
import
Group
,
_add_new_group
from
.communication.all_reduce
import
all_reduce
from
.communication.reduce
import
_get_reduce_op
,
ReduceOp
__all__
=
[]
class
Group
():
"""
The abstract representation of group.
"""
def
__init__
(
self
,
rank
,
rank_num
,
id
=
0
,
ranks
=
[],
pg
=
None
,
name
=
None
):
self
.
rank
=
rank
self
.
nranks
=
rank_num
self
.
id
=
id
self
.
ranks
=
ranks
self
.
pg
=
pg
self
.
name
=
name
def
is_member
(
self
):
if
self
.
rank
<
0
:
return
False
if
self
.
nranks
<
2
:
return
False
return
True
def
get_group_rank
(
self
,
rank
):
if
self
.
is_member
()
and
rank
in
self
.
ranks
:
return
self
.
ranks
.
index
(
rank
)
else
:
return
-
1
@
property
def
process_group
(
self
):
return
self
.
pg
@
property
def
world_size
(
self
):
return
self
.
nranks
if
self
.
rank
>=
0
else
-
1
def
__repr__
(
self
):
debug_str
=
"rank: {}, nranks: {}, id: {}, ranks: "
.
format
(
self
.
rank
,
self
.
nranks
,
self
.
id
)
debug_str
+=
", "
.
join
(
map
(
str
,
self
.
ranks
))
debug_str
+=
"; name: "
debug_str
+=
self
.
name
if
self
.
name
else
"None"
return
debug_str
_global_env
=
None
...
...
@@ -147,9 +105,8 @@ def _get_group_map():
global
_group_map
if
_global_env_gid
not
in
_group_map
:
genv
=
_get_global_env
()
_group_map
[
_global_env_gid
]
=
Group
(
genv
.
rank
,
genv
.
world_size
,
ranks
=
list
(
range
(
genv
.
world_size
)))
_group_map
[
_global_env_gid
]
=
Group
(
genv
.
rank
,
0
,
list
(
range
(
genv
.
world_size
)))
return
_group_map
...
...
@@ -197,19 +154,6 @@ def _new_ring_id():
return
len
(
_get_group_map
())
+
max
(
_get_global_env
().
nrings
,
9
)
def
_get_reduce_op
(
reduce_op
,
func_name
):
if
reduce_op
==
ReduceOp
.
SUM
:
return
core
.
ReduceOp
.
SUM
elif
reduce_op
==
ReduceOp
.
MAX
:
return
core
.
ReduceOp
.
MAX
elif
reduce_op
==
ReduceOp
.
MIN
:
return
core
.
ReduceOp
.
MIN
elif
reduce_op
==
ReduceOp
.
PROD
:
return
core
.
ReduceOp
.
PRODUCT
else
:
raise
ValueError
(
"Unknown reduce_op type for {}."
.
format
(
func_name
))
def
get_group
(
id
=
0
):
"""
...
...
@@ -451,10 +395,13 @@ def new_group(ranks=None, backend=None, timeout=_default_timeout):
else
:
rank
=
-
1
pg
=
None
group
=
Group
(
rank
,
size
,
id
=
gid
,
ranks
=
ranks
,
pg
=
pg
,
name
=
group_name
)
group
=
Group
(
rank
,
gid
,
ranks
,
pg
=
pg
,
name
=
group_name
)
_group_map_by_name
[
group_name
]
=
group
_group_map
[
gid
]
=
group
_group_map_backend
[
group
]
=
backend
#TODO: The method below is a new method for group management, will replace the previous
# three in the future.
_add_new_group
(
group
)
# TODO(shenliang03): This is a temporary solution to solve the problem of
# hang caused by tcp
...
...
@@ -476,13 +423,13 @@ def new_group(ranks=None, backend=None, timeout=_default_timeout):
ring_id
=
_new_ring_id
()
if
global_rank
not
in
ranks
:
gp
=
Group
(
-
1
,
-
1
,
ring_id
,
ranks
)
gp
=
Group
(
-
1
,
ring_id
,
ranks
)
_group_map
[
ring_id
]
=
gp
else
:
ranks
=
sorted
(
ranks
)
group_rank
=
ranks
.
index
(
global_rank
)
group_size
=
len
(
ranks
)
gp
=
Group
(
group_rank
,
group_size
,
ring_id
,
ranks
)
gp
=
Group
(
group_rank
,
ring_id
,
ranks
)
_group_map
[
ring_id
]
=
gp
if
group_size
>=
2
:
...
...
@@ -748,104 +695,6 @@ def broadcast(tensor, src, group=None, sync_op=True):
})
def
all_reduce
(
tensor
,
op
=
ReduceOp
.
SUM
,
group
=
None
,
sync_op
=
True
):
"""
Reduce a tensor over all ranks so that all get the result.
As shown below, one process is started with a GPU and the data of this process is represented
by its group rank. The reduce operator is sum. Through all_reduce operator,
each GPU will have the sum of the data from all GPUs.
.. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
:width: 800
:alt: all_reduce
:align: center
Args:
tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The operation used. Default value is ReduceOp.SUM.
group (Group, optional): The group instance return by new_group or None for global default group.
sync_op (bool, optional): Wether this op is a sync op. Default value is True.
Returns:
None.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
if dist.get_rank() == 0:
data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
else:
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
dist.all_reduce(data)
print(data)
# [[5, 7, 9], [5, 7, 9]] (2 GPUs)
"""
if
group
is
not
None
and
not
group
.
is_member
():
return
if
in_dygraph_mode
():
op_type
=
_get_reduce_op
(
op
,
"all_reduce"
)
group
=
_get_default_group
()
if
group
is
None
else
group
task
=
group
.
process_group
.
allreduce
(
tensor
,
op_type
)
if
sync_op
:
task
.
wait
()
return
None
else
:
return
task
use_calc_stream
=
sync_op
ring_id
=
0
if
group
is
None
else
group
.
id
if
_non_static_mode
():
if
op
==
ReduceOp
.
SUM
:
return
_legacy_C_ops
.
c_allreduce_sum_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
elif
op
==
ReduceOp
.
MAX
:
return
_legacy_C_ops
.
c_allreduce_max_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
elif
op
==
ReduceOp
.
MIN
:
return
_legacy_C_ops
.
c_allreduce_min_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
elif
op
==
ReduceOp
.
PROD
:
return
_legacy_C_ops
.
c_allreduce_prod_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
else
:
raise
ValueError
(
"Unknown parameter: {}."
.
format
(
op
))
check_variable_and_dtype
(
tensor
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
,
'int8'
,
'uint8'
,
'bool'
],
'all_reduce'
)
if
op
==
ReduceOp
.
SUM
:
op_type
=
'c_allreduce_sum'
elif
op
==
ReduceOp
.
MAX
:
op_type
=
'c_allreduce_max'
elif
op
==
ReduceOp
.
MIN
:
op_type
=
'c_allreduce_min'
elif
op
==
ReduceOp
.
PROD
:
op_type
=
'c_allreduce_prod'
if
not
isinstance
(
ring_id
,
int
):
raise
ValueError
(
"The type of 'ring_id' for all_reduce should be int."
)
helper
=
LayerHelper
(
op_type
,
**
locals
())
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
[
tensor
]},
outputs
=
{
'Out'
:
[
tensor
]},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
use_calc_stream
})
def
reduce
(
tensor
,
dst
,
op
=
ReduceOp
.
SUM
,
group
=
None
,
sync_op
=
True
):
"""
...
...
python/paddle/distributed/communication/all_reduce.py
0 → 100644
浏览文件 @
a0dffd39
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.fluid.framework
as
framework
from
paddle.distributed.communication
import
stream
as
stream
from
paddle.distributed.communication.reduce
import
ReduceOp
def
all_reduce
(
tensor
,
op
=
ReduceOp
.
SUM
,
group
=
None
,
sync_op
=
True
):
"""
Reduce a tensor over all ranks so that all get the result.
As shown below, one process is started with a GPU and the data of this process is represented
by its group rank. The reduce operator is sum. Through all_reduce operator,
each GPU will have the sum of the data from all GPUs.
.. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/allreduce.png
:width: 800
:alt: all_reduce
:align: center
Args:
tensor (Tensor): The input Tensor. It also works as the output Tensor. Its data type
should be float16, float32, float64, int32, int64, int8, uint8 or bool.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The operation used. Default value is ReduceOp.SUM.
group (Group, optional): The group instance return by new_group or None for global default group.
sync_op (bool, optional): Wether this op is a sync op. Default value is True.
Returns:
Return a task object.
Examples:
.. code-block:: python
# required: distributed
import paddle
import paddle.distributed as dist
dist.init_parallel_env()
if dist.get_rank() == 0:
data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
else:
data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
dist.all_reduce(data)
print(data)
# [[5, 7, 9], [5, 7, 9]] (2 GPUs)
"""
if
not
framework
.
_in_legacy_dygraph
():
return
stream
.
all_reduce
(
tensor
,
op
=
op
,
group
=
group
,
sync_op
=
sync_op
,
use_calc_stream
=
False
)
# code below will be removed after we remove the old dygraph
use_calc_stream
=
sync_op
ring_id
=
0
if
group
is
None
else
group
.
id
if
op
==
ReduceOp
.
SUM
:
return
paddle
.
_legacy_C_ops
.
c_allreduce_sum_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
elif
op
==
ReduceOp
.
MAX
:
return
paddle
.
_legacy_C_ops
.
c_allreduce_max_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
elif
op
==
ReduceOp
.
MIN
:
return
paddle
.
_legacy_C_ops
.
c_allreduce_min_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
elif
op
==
ReduceOp
.
PROD
:
return
paddle
.
_legacy_C_ops
.
c_allreduce_prod_
(
tensor
,
'use_calc_stream'
,
use_calc_stream
,
'ring_id'
,
ring_id
)
else
:
raise
ValueError
(
"Unknown parameter: {}."
.
format
(
op
))
python/paddle/distributed/communication/group.py
0 → 100644
浏览文件 @
a0dffd39
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class
Group
():
"""
The abstract representation of group.
"""
def
__init__
(
self
,
rank_in_group
,
id
,
ranks
,
pg
=
None
,
name
=
None
):
self
.
_rank_in_group
=
rank_in_group
self
.
_world_size
=
len
(
ranks
)
if
rank_in_group
>=
0
else
-
1
self
.
_id
=
id
self
.
_ranks
=
ranks
self
.
_pg
=
pg
self
.
_name
=
name
@
property
def
rank
(
self
):
return
self
.
_rank_in_group
@
property
def
ranks
(
self
):
return
self
.
_ranks
@
property
def
nranks
(
self
):
return
len
(
self
.
_ranks
)
@
property
def
name
(
self
):
return
self
.
_name
@
property
def
process_group
(
self
):
return
self
.
_pg
@
property
def
world_size
(
self
):
return
self
.
_world_size
@
property
def
id
(
self
):
return
self
.
_id
def
is_member
(
self
):
if
self
.
rank
<
0
:
return
False
if
self
.
nranks
<
2
:
return
False
return
True
def
get_group_rank
(
self
,
rank
):
if
self
.
is_member
():
return
self
.
ranks
.
index
(
rank
)
else
:
return
-
1
def
__repr__
(
self
):
debug_str
=
"rank: {}, nranks: {}, id: {}, ranks: "
.
format
(
self
.
rank
,
self
.
nranks
,
self
.
id
)
debug_str
+=
", "
.
join
(
map
(
str
,
self
.
ranks
))
debug_str
+=
"; name: "
debug_str
+=
self
.
name
if
self
.
name
else
"None"
return
debug_str
class
_GroupManager
():
global_group_id
=
0
group_map_by_id
=
{}
def
_get_global_group
():
if
_GroupManager
.
global_group_id
not
in
_GroupManager
.
group_map_by_id
:
raise
RuntimeError
(
"The global group is not initialized."
)
return
_GroupManager
.
group_map_by_id
[
_GroupManager
.
global_group_id
]
def
_add_new_group
(
group
):
if
group
.
id
in
_GroupManager
.
group_map_by_id
:
raise
RuntimeError
(
"The group with id {} already exist."
.
format
(
group
.
id
))
_GroupManager
.
group_map_by_id
[
group
.
id
]
=
group
python/paddle/distributed/communication/
comm_utils
.py
→
python/paddle/distributed/communication/
reduce
.py
浏览文件 @
a0dffd39
#
Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -12,6 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid.framework
as
framework
import
paddle.fluid.core
as
core
class
ReduceOp
:
"""
...
...
@@ -48,3 +51,26 @@ class ReduceOp:
MIN
=
2
PROD
=
3
AVG
=
4
def
_get_reduce_op
(
reduce_op
,
func_name
):
if
framework
.
in_dygraph_mode
():
if
reduce_op
==
ReduceOp
.
SUM
:
return
core
.
ReduceOp
.
SUM
elif
reduce_op
==
ReduceOp
.
MAX
:
return
core
.
ReduceOp
.
MAX
elif
reduce_op
==
ReduceOp
.
MIN
:
return
core
.
ReduceOp
.
MIN
elif
reduce_op
==
ReduceOp
.
PROD
:
return
core
.
ReduceOp
.
PRODUCT
else
:
if
reduce_op
==
ReduceOp
.
SUM
:
return
'c_allreduce_sum'
elif
reduce_op
==
ReduceOp
.
MAX
:
return
'c_allreduce_max'
elif
reduce_op
==
ReduceOp
.
MIN
:
return
'c_allreduce_min'
elif
reduce_op
==
ReduceOp
.
PROD
:
return
'c_allreduce_prod'
raise
ValueError
(
"Unknown reduce_op type for {}."
.
format
(
func_name
))
python/paddle/distributed/communication/stream/all_reduce.py
浏览文件 @
a0dffd39
...
...
@@ -13,12 +13,16 @@
# limitations under the License.
import
paddle.fluid.framework
as
framework
from
paddle.distributed
import
collective
import
paddle.fluid.data_feeder
as
data_feeder
import
paddle.fluid.layer_helper
as
layer_helper
from
paddle.distributed.communication.reduce
import
_get_reduce_op
,
ReduceOp
from
paddle.distributed.communication.group
import
_get_global_group
def
_all_reduce_in_dygraph
(
tensor
,
op
,
group
,
sync_op
,
use_calc_stream
):
op_type
=
collective
.
_get_reduce_op
(
op
,
"all_reduce"
)
group
=
collective
.
_get_default_group
()
if
group
is
None
else
group
op_type
=
_get_reduce_op
(
op
,
"all_reduce"
)
group
=
_get_global_group
()
if
group
is
None
else
group
if
use_calc_stream
:
return
group
.
process_group
.
allreduce_on_calc_stream
(
tensor
,
op_type
)
...
...
@@ -29,8 +33,34 @@ def _all_reduce_in_dygraph(tensor, op, group, sync_op, use_calc_stream):
return
task
def
_all_reduce_in_static_mode
(
tensor
,
op
,
group
,
sync_op
,
use_calc_stream
):
data_feeder
.
check_variable_and_dtype
(
tensor
,
'tensor'
,
[
'float16'
,
'float32'
,
'float64'
,
'int32'
,
'int64'
,
'int8'
,
'uint8'
,
'bool'
],
'all_reduce'
)
op_type
=
_get_reduce_op
(
op
,
"all_reduce"
)
ring_id
=
0
if
group
is
None
else
group
.
id
if
not
isinstance
(
ring_id
,
int
):
raise
ValueError
(
"The type of 'ring_id' for all_reduce should be int."
)
# TODO: Support task and use task.wait in static mode
# Use use_calc_stream rather than sync_op
helper
=
layer_helper
.
LayerHelper
(
op_type
,
**
locals
())
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
[
tensor
]},
outputs
=
{
'Out'
:
[
tensor
]},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
sync_op
})
return
None
def
all_reduce
(
tensor
,
op
=
collective
.
ReduceOp
.
SUM
,
op
=
ReduceOp
.
SUM
,
group
=
None
,
sync_op
=
True
,
use_calc_stream
=
False
):
...
...
@@ -41,7 +71,7 @@ def all_reduce(tensor,
Args:
tensor (Tensor): The input tensor on each rank. The result will overwrite this tenor after communication. Support
float16, float32, float64, int32 or int64 as the input data type.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.M
in
|ReduceOp.PROD, optional): The reduction used. If none is given, use ReduceOp.SUM as default.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.M
IN
|ReduceOp.PROD, optional): The reduction used. If none is given, use ReduceOp.SUM as default.
group (Group, optional): Communicate in which group. If none is given, use the global group as default.
sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
...
...
@@ -50,9 +80,6 @@ def all_reduce(tensor,
Returns:
Return a task object.
Warning:
This API only supports the dygraph mode now.
Examples:
.. code-block:: python
...
...
@@ -84,7 +111,6 @@ def all_reduce(tensor,
if
framework
.
in_dygraph_mode
():
return
_all_reduce_in_dygraph
(
tensor
,
op
,
group
,
sync_op
,
use_calc_stream
)
raise
RuntimeError
(
"paddle.distributed.stream.all_reduce is only supported in dygraph mode now."
)
else
:
return
_all_reduce_in_static_mode
(
tensor
,
op
,
group
,
sync_op
,
use_calc_stream
)
python/paddle/distributed/fleet/base/topology.py
浏览文件 @
a0dffd39
...
...
@@ -377,8 +377,8 @@ class _CommunicateGroup(object):
def
set_comm_group
(
self
,
group_name
,
group_rank
,
group_size
,
ring_id
,
group_ranks
):
group
=
paddle
.
distributed
.
collective
.
Group
(
group_rank
,
group_size
,
ring_id
,
group_ranks
)
group
=
paddle
.
distributed
.
collective
.
Group
(
group_rank
,
ring_id
,
group_ranks
)
self
.
groups
[
group_name
]
=
group
def
get_group
(
self
,
group_name
):
...
...
python/paddle/distributed/fleet/layers/mpu/mp_ops.py
浏览文件 @
a0dffd39
...
...
@@ -22,7 +22,7 @@ from paddle.fluid.layer_helper import LayerHelper
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle.fluid.dygraph
import
layers
from
paddle.distributed
import
collective
from
....communication.
comm_utils
import
ReduceOp
from
....communication.
reduce
import
ReduceOp
from
paddle.fluid.data_feeder
import
check_dtype
import
paddle.fluid.dygraph_utils
as
dygraph_utils
...
...
python/paddle/distributed/parallel.py
浏览文件 @
a0dffd39
...
...
@@ -43,6 +43,7 @@ from paddle.distributed.collective import _set_default_store
from
paddle.distributed.collective
import
_new_process_group_impl
from
paddle.distributed.collective
import
Group
from
paddle.distributed.collective
import
_set_group_map_backend
from
paddle.distributed.communication.group
import
_add_new_group
__all__
=
[]
...
...
@@ -258,15 +259,11 @@ def init_parallel_env():
_default_group_name
,
pg_options
=
None
)
ranks
=
list
(
range
(
world_size
))
group
=
Group
(
rank
,
world_size
,
id
=
0
,
ranks
=
ranks
,
pg
=
pg
,
name
=
_default_group_name
)
group
=
Group
(
rank
,
0
,
ranks
,
pg
=
pg
,
name
=
_default_group_name
)
_set_group_map_by_name
(
_default_group_name
,
group
)
_set_group_map
(
0
,
group
)
_set_group_map_backend
(
group
,
backend
)
_add_new_group
(
group
)
parallel_helper
.
_set_parallel_ctx
(
True
)
paddle
.
distributed
.
barrier
(
group
=
group
)
...
...
python/paddle/incubate/distributed/models/moe/moe_layer.py
浏览文件 @
a0dffd39
...
...
@@ -265,7 +265,6 @@ class MoELayer(nn.Layer):
from paddle.distributed import fleet
moe_group = Group(fleet.worker_index(),
fleet.worker_num(),
0,
list(range(fleet.worker_num())))
mp_group = None
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录