momentum.py 26.9 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
Jiangxinz 已提交
15 16
import warnings

J
Jiawei Wang 已提交
17 18 19 20
from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
21
from ..fluid.layer_helper import LayerHelper
H
huangxu96 已提交
22 23
from ..fluid import unique_name
from ..fluid import layers
24
import paddle.fluid as fluid
H
huangxu96 已提交
25
from paddle.fluid.regularizer import L2DecayRegularizer
26
from paddle import _C_ops, _legacy_C_ops
27
import paddle
28
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
J
Jiawei Wang 已提交
29

30 31
__all__ = []

J
Jiawei Wang 已提交
32 33

class Momentum(Optimizer):
34
    r"""
J
Jiawei Wang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

        &\quad   param = param - (gradient + mu * velocity) * learning\_rate

        & else:

        &\quad   param = param - learning\_rate * velocity

    Parameters:

        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
        momentum (float): Momentum factor. The default value is 0.9.
59 60 61 62 63
        parameters (list|tuple, optional): List|Tuple of ``Tensor`` to update to minimize ``loss``. \
            This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
J
Jiawei Wang 已提交
64 65
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
66 67 68 69 70 71
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
J
Jiawei Wang 已提交
72 73 74 75
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
H
huangxu96 已提交
76 77 78
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` before updating. \
            Often choose to be ``1.0/batch_size``.
79
        use_multi_tensor (bool, optional): Whether to use multi-tensor strategy to update all parameters at once . Default is false.
J
Jiawei Wang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            momentum.step()
            momentum.clear_grad()
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            momentum = paddle.optimizer.Momentum(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1
                }],
                weight_decay=0.01,
                momentum=0.9)                   
            out.backward()
            momentum.step()
            momentum.clear_grad()

J
Jiawei Wang 已提交
123 124 125
    """
    _velocity_acc_str = "velocity"

126 127 128 129 130 131 132 133 134 135 136 137 138
    def __init__(
        self,
        learning_rate=0.001,
        momentum=0.9,
        parameters=None,
        use_nesterov=False,
        weight_decay=None,
        grad_clip=None,
        multi_precision=False,
        rescale_grad=1.0,
        use_multi_tensor=False,
        name=None,
    ):
J
Jiawei Wang 已提交
139 140 141 142
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
        if momentum is None:
            raise ValueError("momentum is not set")
143

144 145 146
        predicate = lambda regular: isinstance(
            regular, (L2DecayRegularizer, float)
        )
147 148 149
        if isinstance(parameters, list):
            if isinstance(parameters[0], dict):
                for param_group in parameters:
150 151 152 153 154
                    decay = (
                        param_group['weight_decay']
                        if 'weight_decay' in param_group
                        else weight_decay
                    )
155 156 157 158 159 160
                    reg_method, reg_coeff = self._update_regularization(decay)
                    param_group['regularization_method'] = reg_method
                    param_group['regularization_coeff'] = reg_coeff
                    py_regular = None if predicate(decay) else decay
                    param_group['weight_decay'] = py_regular

H
huangxu96 已提交
161
        py_regular = None if predicate(weight_decay) else weight_decay
162 163 164 165 166 167 168
        super(Momentum, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=py_regular,
            grad_clip=grad_clip,
            name=name,
        )
J
Jiawei Wang 已提交
169 170 171
        self.type = "momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
172 173 174 175
        (
            self._regularization_method,
            self._regularization_coeff,
        ) = self._update_regularization(weight_decay)
H
huangxu96 已提交
176 177 178 179
        self._multi_precision = multi_precision
        self._rescale_grad = rescale_grad
        self._master_weights = {}

180 181 182 183 184 185 186
        self._default_dict = {
            'momentum': momentum,
            'use_nesterov': use_nesterov,
            'rescale_grad': rescale_grad,
            'regularization_method': self._regularization_method,
            'regularization_coeff': self._regularization_coeff,
        }
187 188
        self._use_multi_tensor = use_multi_tensor
        if self._use_multi_tensor:
189 190 191 192 193 194
            self._param_dict = self._create_multi_tensor_dict()
            self._velocity_dict = self._create_multi_tensor_dict()
            self._master_weight_dict = self._create_multi_tensor_dict()
            self._master_weight_dict['FP32_LODTensor'] = None
            self._regularization_method_dict = self._create_multi_tensor_dict()
            self._regularization_coeff_dict = self._create_multi_tensor_dict()
195 196 197

    def _update_regularization(self, weight_decay):
        reg_method = ""
198
        reg_coeff = 0.0
199

200
        if isinstance(weight_decay, L2DecayRegularizer):
201 202
            reg_method = "l2_decay"
            reg_coeff = weight_decay._regularization_coeff
203
        if isinstance(weight_decay, float):
204 205 206
            reg_method = "l2_decay"
            reg_coeff = weight_decay
        return reg_method, reg_coeff
J
Jiawei Wang 已提交
207

H
huangxu96 已提交
208
    def _create_master_weight(self, param):
209 210 211 212 213 214 215
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
216 217 218 219 220 221 222
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
223
            block = self.helper.startup_program.global_block()
224 225 226 227 228 229 230 231 232
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
233
            self._master_weights[param.name] = var
H
huangxu96 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
248 249 250 251 252 253
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
H
huangxu96 已提交
254
        target_name = target_param.name
255 256 257 258
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
259 260
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
261 262 263
                    name, target_name
                )
            )
H
huangxu96 已提交
264 265
        return self._accumulators[name][target_name]

J
Jiawei Wang 已提交
266
    def _create_accumulators(self, block, parameters):
267
        '''
J
Jiabin Yang 已提交
268
        if framework._non_static_mode():
269
            return
270
        '''
J
Jiawei Wang 已提交
271
        assert isinstance(block, framework.Block)
272 273 274 275

        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

276 277 278 279 280
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
281 282 283 284
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
285 286 287 288 289
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Momentum optimizer."
                )
            self._add_accumulator(self._velocity_acc_str, p)
J
Jiawei Wang 已提交
290

291
    def _create_regularization_of_grad(self, param, grad, regularization=None):
292 293
        """Create and add backward regularization Operators

294 295 296 297
        Function helper of append_regularization_ops.
        """
        # If ParamAttr is set to L2Decay, we skip doing regularization here. And then we fused
        # L2Decay with momentum which can refer to _append_optimize_op below.
298 299 300
        if hasattr(param, 'regularizer') and isinstance(
            param.regularizer, L2DecayRegularizer
        ):
301 302
            return grad
        return super(Momentum, self)._create_regularization_of_grad(
303 304
            param, grad, regularization
        )
305

J
Jiawei Wang 已提交
306 307
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
308 309
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
J
Jiawei Wang 已提交
310

311 312 313
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
J
Jiawei Wang 已提交
314 315
        lr = self._create_param_lr(param_and_grad)

316
        # For fusion of momentum and l2decay
317 318 319 320 321 322 323 324 325 326 327
        param = param_and_grad[0]
        regularization_method = self._regularization_method
        regularization_coeff = self._regularization_coeff
        if hasattr(param, 'regularizer'):
            # we skip param's l2decay before, so fuse it with momentum here.
            if isinstance(param.regularizer, L2DecayRegularizer):
                regularization_method = "l2_decay"
                regularization_coeff = param.regularizer._regularization_coeff
            # the param's regularization has been done before, we avoid do l2decay in momentum.
            elif param.regularizer is not None:
                regularization_method = ""
328
                regularization_coeff = 0.0
329

330 331 332 333 334 335 336 337 338
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
339

340
        if _in_legacy_dygraph():
341 342
            if isinstance(param_and_grad, dict):
                self._update_regularization(param_and_grad['weight_decay'])
343
            _, _, _ = _legacy_C_ops.momentum(
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
                'regularization_method',
                regularization_method,
                'regularization_coeff',
                regularization_coeff,
                'multi_precision',
                find_master,
            )
363
            return None
364 365 366
        if in_dygraph_mode():
            if isinstance(param_and_grad, dict):
                self._update_regularization(param_and_grad['weight_decay'])
367 368 369 370 371 372 373 374 375 376 377 378 379
            return _C_ops.momentum_(
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                self._momentum,
                self._use_nesterov,
                regularization_method,
                regularization_coeff,
                find_master,
                self._rescale_grad,
            )
380

H
huangxu96 已提交
381 382 383
        attrs = {
            "mu": self._momentum,
            "use_nesterov": self._use_nesterov,
384 385
            "regularization_method": regularization_method,
            "regularization_coeff": regularization_coeff,
H
huangxu96 已提交
386
            "multi_precision": find_master,
387
            "rescale_grad": self._rescale_grad,
H
huangxu96 已提交
388 389
        }

J
Jiawei Wang 已提交
390 391 392 393
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
394
            "LearningRate": [lr],
J
Jiawei Wang 已提交
395 396 397 398
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
399
            "VelocityOut": [velocity_acc],
J
Jiawei Wang 已提交
400
        }
H
huangxu96 已提交
401 402 403 404 405

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiawei Wang 已提交
406
        # create the momentum optimize op
407 408 409 410 411 412 413
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
J
Jiawei Wang 已提交
414 415

        return momentum_op
416

417
    def _multi_tensor_init(self, target_block, parameters, param_group_idx):
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
        """
        All parameters used for optimizer (such as: parameters, master_weight, velocity_acc for momentum) calculations are grouped into a python list by data type (float16, float32).
        This function will be overridden in the corresponding optimizer file.

        Args:
            target_block: the block in which the loss tensor is present
            parameters: list of parameter tensors for the optimizer
        """
        self._create_accumulators(target_block, parameters)
        for param in parameters:
            velocity_acc = self._get_accumulator(self._velocity_acc_str, param)
            regularization_method = self._regularization_method
            regularization_coeff = self._regularization_coeff
            if hasattr(param, 'regularizer'):
                # we skip param's l2decay before, so fuse it with momentum here.
                if isinstance(param.regularizer, L2DecayRegularizer):
                    regularization_method = "l2_decay"
435 436 437
                    regularization_coeff = (
                        param.regularizer._regularization_coeff
                    )
438
                elif param.regularizer is not None:
439 440 441
                    regularization_method = ""
                    regularization_coeff = 0.0
            if param.dtype == paddle.float32:
442 443 444 445 446 447
                self._param_dict['FP32_LODTensor'][param_group_idx].append(
                    param
                )
                self._velocity_dict['FP32_LODTensor'][param_group_idx].append(
                    velocity_acc
                )
448
                # fp32 no master weight
449 450 451 452 453 454
                self._regularization_method_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(regularization_method)
                self._regularization_coeff_dict['FP32_LODTensor'][
                    param_group_idx
                ].append(regularization_coeff)
455
            elif param.dtype == paddle.float16:
456 457 458 459 460 461
                self._param_dict['FP16_LODTensor'][param_group_idx].append(
                    param
                )
                self._velocity_dict['FP16_LODTensor'][param_group_idx].append(
                    velocity_acc
                )
462
                if self._multi_precision:
463 464 465
                    self._master_weight_dict['FP16_LODTensor'][
                        param_group_idx
                    ].append(self._master_weights[param.name])
466
                else:
467 468 469 470 471 472 473 474 475
                    self._master_weight_dict['FP16_LODTensor'][
                        param_group_idx
                    ] = None
                self._regularization_method_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(regularization_method)
                self._regularization_coeff_dict['FP16_LODTensor'][
                    param_group_idx
                ].append(regularization_coeff)
476 477 478 479 480
            else:
                raise ValueError(
                    "Now multi_tensor_momentum only support fp32 and fp16 parameters and grad is LOD_TENSOR."
                )

481 482 483 484 485 486 487
    def _append_optimize_multi_tensor_op(
        self,
        target_block,
        parameters_and_grads,
        param_group_idx,
    ):
        """
488 489 490 491 492 493 494 495 496 497 498 499
        For Multi Tensor, append optimize merged_operator to block.
        """
        assert isinstance(target_block, framework.Block)

        grad_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}
        lr_dict = {'FP32_LODTensor': [], 'FP16_LODTensor': []}

        if isinstance(parameters_and_grads, list):
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
500 501 502 503 504
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
505 506 507
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
508 509 510 511 512
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
513 514 515 516 517 518 519 520 521 522
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)
        else:
            for param_and_grad in parameters_and_grads['params']:
                if param_and_grad[1] is None:
                    continue
                if param_and_grad[0].stop_gradient is False:
                    param_grad_dict = dict()
                    param_grad_dict['params'] = param_and_grad
523 524 525 526 527 528 529
                    param_grad_dict.update(
                        {
                            k: v
                            for k, v in parameters_and_grads.items()
                            if k != 'params'
                        }
                    )
530
                    param_and_grad = self._update_param_group(param_grad_dict)
531 532 533 534 535
                    if (
                        param_and_grad[0].dtype == paddle.float32
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
536 537 538
                        grad_dict['FP32_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP32_LODTensor'].append(lr)
539 540 541 542 543
                    elif (
                        param_and_grad[0].dtype == paddle.float16
                        and param_and_grad[1].type
                        == core.VarDesc.VarType.LOD_TENSOR
                    ):
544 545 546 547 548 549
                        grad_dict['FP16_LODTensor'].append(param_and_grad[1])
                        lr = self._create_param_lr(param_and_grad)
                        lr_dict['FP16_LODTensor'].append(lr)

        multi_tensor_list = ['FP32_LODTensor', 'FP16_LODTensor']
        for key in multi_tensor_list:
550
            if len(self._param_dict[key][param_group_idx]) > 0:
551
                find_master = self._multi_precision and key == 'FP16_LODTensor'
552

553 554 555 556 557 558 559
                master_weight = self._master_weight_dict[key]
                master_weight = (
                    master_weight[param_group_idx]
                    if master_weight is not None
                    else None
                )

J
Jiabin Yang 已提交
560
                if framework._non_static_mode():
561
                    if in_dygraph_mode():
562
                        _, _, _ = _C_ops.merged_momentum_(
563 564 565 566 567 568
                            self._param_dict[key][param_group_idx],
                            grad_dict[key],
                            self._velocity_dict[key][param_group_idx],
                            lr_dict[key],
                            master_weight,
                            self._momentum,
569
                            self._use_nesterov,
570 571 572 573 574 575 576 577 578
                            self._regularization_method_dict[key][
                                param_group_idx
                            ],
                            self._regularization_coeff_dict[key][
                                param_group_idx
                            ],
                            find_master,
                            self._rescale_grad,
                        )
579
                    else:
580
                        _, _, _ = _legacy_C_ops.merged_momentum(
581 582 583 584 585 586 587 588 589 590 591 592
                            self._param_dict[key][param_group_idx],
                            grad_dict[key],
                            self._velocity_dict[key][param_group_idx],
                            lr_dict[key],
                            master_weight,
                            self._param_dict[key][param_group_idx],
                            self._velocity_dict[key][param_group_idx],
                            master_weight,
                            'mu',
                            self._momentum,
                            'use_nesterov',
                            self._use_nesterov,
593
                            'regularization_method',
594 595 596
                            self._regularization_method_dict[key][
                                param_group_idx
                            ],
597
                            'regularization_coeff',
598 599 600 601 602 603
                            self._regularization_coeff_dict[key][
                                param_group_idx
                            ],
                            'multi_precision',
                            find_master,
                        )
604 605
                else:
                    inputs = {
606
                        "Param": self._param_dict[key][param_group_idx],
607
                        "Grad": grad_dict[key],
608
                        "Velocity": self._velocity_dict[key][param_group_idx],
609 610 611
                        "LearningRate": lr_dict[key],
                    }
                    outputs = {
612 613 614 615
                        "ParamOut": self._param_dict[key][param_group_idx],
                        "VelocityOut": self._velocity_dict[key][
                            param_group_idx
                        ],
616 617
                    }
                    attrs = {
618 619 620 621 622 623 624 625 626 627
                        "mu": self._momentum,
                        "use_nesterov": self._use_nesterov,
                        "regularization_method": self._regularization_method_dict[
                            key
                        ][
                            param_group_idx
                        ],
                        "regularization_coeff": self._regularization_coeff_dict[
                            key
                        ][param_group_idx],
628
                    }
629
                    if find_master:
630 631 632
                        inputs["MasterParam"] = self._master_weight_dict[key][
                            param_group_idx
                        ]
633
                        outputs["MasterParamOut"] = self._master_weight_dict[
634 635
                            key
                        ][param_group_idx]
636
                        attrs["multi_precision"] = find_master
637 638 639 640 641 642 643
                    target_block.append_op(
                        type="merged_momentum",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
644 645
        return None

646
    def _update_param_group(self, parameters):
647 648 649 650 651 652 653 654 655
        self._momentum = parameters.get(
            'momentum', self._default_dict['momentum']
        )
        self._use_nesterov = parameters.get(
            'use_nesterov', self._default_dict['use_nesterov']
        )
        self._rescale_grad = parameters.get(
            'rescale_grad', self._default_dict['rescale_grad']
        )
656
        self._regularization_method = parameters.get(
657 658
            'regularization_method', self._default_dict['regularization_method']
        )
659
        self._regularization_coeff = parameters.get(
660 661
            'regularization_coeff', self._default_dict['regularization_coeff']
        )
662 663
        parameters = parameters.get('params')
        return parameters