test_momentum_op.py 36.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

S
sidgoyal78 已提交
17 18
import unittest
import numpy as np
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21
from op_test import OpTest
J
Jiawei Wang 已提交
22 23
import paddle
import paddle.fluid as fluid
24
import numpy
25
from paddle.fluid.framework import _test_eager_guard
S
sidgoyal78 已提交
26 27


28 29 30 31 32 33 34 35 36 37
def calculate_momentum_by_numpy(
    param,
    grad,
    mu,
    velocity,
    use_nesterov,
    learning_rate,
    regularization_method=None,
    regularization_coeff=1.0,
):
38 39 40 41 42 43 44 45 46 47 48
    if regularization_method == "l2_decay":
        grad = grad + regularization_coeff * param

        velocity_out = mu * velocity + grad
        if use_nesterov:
            param_out = param - (grad + velocity_out * mu) * learning_rate
        else:
            param_out = param - learning_rate * velocity_out
    else:
        velocity_out = mu * velocity + grad
        if use_nesterov:
49 50 51
            param_out = (
                param - grad * learning_rate - velocity_out * mu * learning_rate
            )
52 53 54 55 56 57
        else:
            param_out = param - learning_rate * velocity_out

    return param_out, velocity_out


K
kavyasrinet 已提交
58
class TestMomentumOp1(OpTest):
S
sidgoyal78 已提交
59 60
    def setUp(self):
        self.op_type = "momentum"
W
Wu Yi 已提交
61 62
        self.dtype = np.float32
        self.init_dtype()
S
sidgoyal78 已提交
63

W
Wu Yi 已提交
64 65 66
        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
67
        learning_rate = np.array([0.001]).astype(np.float32)
S
sidgoyal78 已提交
68
        mu = 0.0001
K
kavyasrinet 已提交
69
        use_nesterov = False
S
sidgoyal78 已提交
70 71 72 73 74

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
75
            'LearningRate': learning_rate,
S
sidgoyal78 已提交
76 77 78 79
        }

        self.attrs = {'mu': mu}

80 81 82 83 84 85
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
86 87
            learning_rate=learning_rate,
        )
K
kavyasrinet 已提交
88 89 90

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

W
Wu Yi 已提交
91 92 93
    def init_dtype(self):
        pass

K
kavyasrinet 已提交
94 95 96 97
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
98 99 100 101 102 103 104 105
class TestMomentumOpFp16(TestMomentumOp1):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


K
kavyasrinet 已提交
106
class TestMomentumOp2(OpTest):
107
    '''Test Momentum with default values for attributes'''
K
kavyasrinet 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

    def setUp(self):
        self.op_type = "momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        use_nesterov = True

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
123
            'LearningRate': learning_rate,
K
kavyasrinet 已提交
124 125
        }

126
        self.attrs = {'mu': mu, 'use_nesterov': use_nesterov}
K
kavyasrinet 已提交
127

128 129 130 131 132 133
        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
134 135
            learning_rate=learning_rate,
        )
S
sidgoyal78 已提交
136 137 138 139 140 141 142

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


143 144 145
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
146 147
class TestLarsMomentumOpWithMP(OpTest):
    def setUp(self):
L
limingshu 已提交
148
        self.config()
149 150 151 152 153 154
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005
        rescale_grad = 1.0

L
limingshu 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        params = []
        grads = []
        velocitys = []
        learning_rates = []
        master_params = []
        param_outs = []
        velocity_outs = []
        master_param_outs = []
        for i in range(self.params_num):
            master_param = np.random.random((123, 321)).astype("float32")
            param = master_param.astype("float16")
            grad = np.random.random((123, 321)).astype("float16")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")

            fp32_grad = grad.astype("float32")
            pnorm = np.sqrt(np.square(master_param).sum())
            gnorm = np.sqrt(np.square(fp32_grad).sum())
173 174 175 176 177 178
            local_lr = (
                learning_rate
                * lars_coeff
                * pnorm
                / (gnorm + lars_weight_decay * pnorm)
            )
L
limingshu 已提交
179 180
            fp32_grad = fp32_grad * rescale_grad
            velocity_out = mu * velocity + local_lr * (
181 182
                fp32_grad + lars_weight_decay * master_param
            )
L
limingshu 已提交
183 184 185 186 187 188 189 190 191 192 193 194
            p_new = master_param - velocity_out
            param_out = p_new.astype("float16")
            master_param_out = p_new

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))
            master_params.append(("SubMasterParam_" + str(i), master_param))
            master_param_outs.append(
195 196
                ("SubMasterParamOut_" + str(i), master_param_out)
            )
L
limingshu 已提交
197

198
        self.inputs = {
L
limingshu 已提交
199 200 201 202 203
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
            'LearningRate': learning_rates,
            'MasterParam': master_params,
204 205 206 207 208
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
L
limingshu 已提交
209
            'lars_weight_decay': [lars_weight_decay],
210
            'multi_precision': True,
211
            'rescale_grad': rescale_grad,
212 213 214
        }

        self.outputs = {
L
limingshu 已提交
215 216
            'ParamOut': param_outs,
            'VelocityOut': velocity_outs,
217
            'MasterParamOut': master_param_outs,
218 219 220 221 222 223 224 225 226
        }

    def test_check_output(self):
        paddle.enable_static()
        if core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place)

L
limingshu 已提交
227 228 229
    def config(self):
        self.params_num = 1

230

231 232
class TestLarsMomentumOp(OpTest):
    def setUp(self):
L
limingshu 已提交
233
        self.config()
234 235 236 237 238
        self.op_type = "lars_momentum"
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005

L
limingshu 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251
        params = []
        grads = []
        velocitys = []
        param_outs = []
        velocity_outs = []
        learning_rates = []
        for i in range(self.params_num):
            param = np.random.random((123, 321)).astype("float32")
            grad = np.random.random((123, 321)).astype("float32")
            velocity = np.zeros((123, 321)).astype("float32")
            learning_rate = np.array([0.001]).astype("float32")
            pnorm = np.sqrt(np.square(param).sum())
            gnorm = np.sqrt(np.square(grad).sum())
252 253 254 255 256 257
            local_lr = (
                learning_rate
                * lars_coeff
                * pnorm
                / (gnorm + lars_weight_decay * param)
            )
258
            velocity_out = mu * velocity + local_lr * (
259 260
                grad + lars_weight_decay * param
            )
L
limingshu 已提交
261 262 263 264 265 266 267 268 269
            param_out = param - velocity_out

            params.append(("SubParam_" + str(i), param))
            grads.append(("SubGrad_" + str(i), grad))
            velocitys.append(("SubVelocity_" + str(i), velocity))
            learning_rates.append(("SubLearning_rate_" + str(i), learning_rate))
            velocity_outs.append(("SubVelocity_out_" + str(i), velocity_out))
            param_outs.append(("SubParam_out_" + str(i), param_out))

270
        self.inputs = {
L
limingshu 已提交
271 272 273
            'Param': params,
            'Grad': grads,
            'Velocity': velocitys,
274
            'LearningRate': learning_rates,
275 276 277 278 279
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
280
            'lars_weight_decay': [lars_weight_decay],
281
        }
L
limingshu 已提交
282
        self.outputs = {'ParamOut': param_outs, 'VelocityOut': velocity_outs}
283 284

    def test_check_output(self):
285
        paddle.enable_static()
286 287
        self.check_output()

L
limingshu 已提交
288 289 290
    def config(self):
        self.params_num = 1

291

292 293 294
class TestSparseMomentumOp(unittest.TestCase):
    def setUp(self):
        self.use_nesterov = False
295 296
        self.regularization_method = ""
        self.regularization_coeff = 1.0
297 298 299 300 301 302 303 304 305 306

    def check_with_place(self, place):
        self.init_kernel()
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
307 308
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")
        param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array, place)

D
dzhwinter 已提交
327 328 329 330
        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
331 332 333
        velocity_out_np_array = np.full((height, row_numel), 0.0).astype(
            "float32"
        )
D
dzhwinter 已提交
334
        velocity_out.set(velocity_out_np_array, place)
335

336
        # create and initialize LearningRate Variable
337 338 339 340 341
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
342 343 344 345 346 347 348 349 350 351 352 353 354
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
        )
355 356 357 358
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
D
dzhwinter 已提交
359
        velocity_out_np_array = np.array(velocity_out)
360 361 362

        # TODO(dzh): add a more suitable general numpy interface
        # for sparse update.
D
dzhwinter 已提交
363 364 365
        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]
366

D
dzhwinter 已提交
367
        _param = param_array
368 369 370 371 372 373 374 375 376

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
377 378
            regularization_coeff=regularization_coeff,
        )
379

380
        self.assertTrue((_velocity_out == velocity_out_np_array).all())
D
dzhwinter 已提交
381
        self.assertTrue((_param_out == param_out_np_array).all())
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

    def init_kernel(self):
        pass

    def test_sparse_momentum(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseMomentumOp2(TestSparseMomentumOp):
    def init_kernel(self):
        self.use_nesterov = True


399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
class TestSparseMomentumOpWithMultiPrecision(unittest.TestCase):
    def setUp(self):
        self.init_args()
        self.regularization_method = ""
        self.regularization_coeff = 1.0

    def check_with_place(self, place):
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        # create and initialize Param Variable
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")

        param = scope.var('Param').get_tensor()
        param.set(param_array.astype("float16"), place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out.set(param_out_array.astype("float16"), place)

        master_param = scope.var('MasterParam').get_tensor()
        master_param.set(param_array, place)
        master_param_out = scope.var("MasterParamOut").get_tensor()
        master_param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array.astype("float16"), place)

        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
443 444 445
        velocity_out_np_array = np.full((height, row_numel), 0.0).astype(
            "float32"
        )
446 447 448 449 450 451 452 453
        velocity_out.set(velocity_out_np_array, place)

        # create and initialize LearningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            MasterParam='MasterParam',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            MasterParamOut='MasterParamOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov,
            regularization_method=regularization_method,
            regularization_coeff=regularization_coeff,
            multi_precision=True,
            rescale_grad=1.0,
        )
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
        velocity_out_np_array = np.array(velocity_out)

        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]

        _param = param_array

        _param_out, _velocity_out = calculate_momentum_by_numpy(
            param=_param,
            grad=_grad_np_array,
            mu=mu,
            velocity=velocity_np_array,
            use_nesterov=use_nesterov,
            learning_rate=lr_array,
            regularization_method=regularization_method,
491 492
            regularization_coeff=regularization_coeff,
        )
493 494 495 496 497 498 499 500 501 502 503 504 505

        self.assertTrue((_velocity_out == velocity_out_np_array).all())
        self.assertTrue((_param_out == param_out_np_array).all())

    def init_args(self):
        self.use_nesterov = False

    def test_sparse_momentum(self):
        if core.is_compiled_with_cuda():
            self.check_with_place(fluid.CUDAPlace(0))


class TestSparseMomentumOpWithMultiPrecision2(
506 507
    TestSparseMomentumOpWithMultiPrecision
):
508 509 510 511
    def init_args(self):
        self.use_nesterov = True


J
Jiawei Wang 已提交
512 513 514 515 516 517 518
class TestMomentumV2(unittest.TestCase):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear = paddle.nn.Linear(13, 5)
        # This can be any optimizer supported by dygraph.
519 520 521
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01, momentum=0.9, parameters=linear.parameters()
        )
J
Jiawei Wang 已提交
522 523 524 525 526 527
        out = linear(a)
        out.backward()
        adam.step()
        adam.clear_gradients()

    def test_momentum(self):
528
        paddle.enable_static()
J
Jiawei Wang 已提交
529 530 531 532 533 534 535
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
536
            avg_cost = paddle.mean(cost)
J
Jiawei Wang 已提交
537

538 539 540
            rms_optimizer = paddle.optimizer.Momentum(
                learning_rate=0.1, momentum=0.9
            )
J
Jiawei Wang 已提交
541 542 543
            rms_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
544 545 546
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
J
Jiawei Wang 已提交
547 548 549 550 551 552 553
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

    def test_raise_error(self):
554 555 556
        self.assertRaises(
            ValueError, paddle.optimizer.Momentum, learning_rate=None
        )
J
Jiawei Wang 已提交
557 558
        self.assertRaises(ValueError, paddle.optimizer.Momentum, momentum=None)

559 560 561 562 563
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_momentum_dygraph()
            self.test_raise_error()

J
Jiawei Wang 已提交
564

565 566 567 568 569 570 571 572 573 574 575 576
class TestMomentumOpWithDecay(OpTest):
    def setUp(self):
        self.op_type = "momentum"
        self.dtype = np.float32
        self.use_nesterov = True
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9
        self.init_config()

        param = np.random.random((123, 321)).astype(self.dtype)
        grad = np.random.random((123, 321)).astype(self.dtype)
        velocity = np.zeros((123, 321)).astype(self.dtype)
577
        learning_rate = np.array([0.001]).astype(np.float32)
578 579 580 581 582 583 584 585 586
        mu = 0.0001
        use_nesterov = self.use_nesterov
        regularization_method = self.regularization_method
        regularization_coeff = self.regularization_coeff

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
587
            'LearningRate': learning_rate,
588 589 590 591 592 593
        }

        self.attrs = {
            'mu': mu,
            'use_nesterov': use_nesterov,
            'regularization_method': regularization_method,
594
            'regularization_coeff': regularization_coeff,
595 596 597 598 599 600 601 602 603 604
        }

        grad = grad + regularization_coeff * param

        param_out, velocity_out = calculate_momentum_by_numpy(
            param=param,
            grad=grad,
            mu=mu,
            velocity=velocity,
            use_nesterov=use_nesterov,
605 606
            learning_rate=learning_rate,
        )
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def init_config(self):
        pass

    def test_check_output(self):
        paddle.enable_static()
        self.check_output()


class TestMomentumOpWithDecayFP16(TestMomentumOpWithDecay):
    def init_config(self):
        self.dtype = np.float16

    def test_check_output(self):
        paddle.enable_static()
        self.check_output(atol=1e-3)


class TestMomentumOpWithDecay2(TestMomentumOpWithDecay):
    def init_config(self):
        self.use_nesterov = False


class TestSparseMomentumOpWithDecay(TestSparseMomentumOp):
    def setUp(self):
        self.use_nesterov = False
        self.regularization_method = 'l2_decay'
        self.regularization_coeff = 0.9


class TestSparseMomentumOpWithDecay2(TestSparseMomentumOpWithDecay):
    def init_kernel(self):
        self.use_nesterov = True


class TestMomentumOpWithDecayAPI(unittest.TestCase):
    def _test_momentum_dygraph_common(self, regularization):
        paddle.disable_static()
        inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
        inp = paddle.to_tensor(inp)
        out = linear(inp)
        loss = paddle.mean(out)
        # This can be any optimizer supported by dygraph.
        momentum = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear.parameters(),
657 658
            regularization=regularization,
        )
659 660 661 662 663
        momentum.minimize(loss)

    def test_momentum_dygraph_1(self):
        self._test_momentum_dygraph_common(
            regularization=paddle.fluid.regularizer.L2Decay(
664 665 666
                regularization_coeff=0.1
            )
        )
667 668 669 670 671 672 673 674 675 676

    def test_momentum_static(self):
        paddle.enable_static()
        place = fluid.CPUPlace()
        main = fluid.Program()
        with fluid.program_guard(main):
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
677
            avg_cost = paddle.mean(cost)
678 679

            momentum_optimizer = paddle.fluid.contrib.optimizer.Momentum(
680 681
                learning_rate=0.1, momentum=0.9
            )
682 683 684
            momentum_optimizer.minimize(avg_cost)

            fetch_list = [avg_cost]
685 686 687
            train_reader = paddle.batch(
                paddle.dataset.uci_housing.train(), batch_size=1
            )
688 689 690 691 692 693 694
            feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            for data in train_reader():
                exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)


695 696 697 698
class TestFusedMomentumWithDecayAPI(unittest.TestCase):
    def get_program(self, weight_attr, bias_attr=False):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
699 700 701
        with paddle.static.program_guard(
            main_program=main_program, startup_program=startup_program
        ):
702
            x = paddle.static.data(name='x', shape=[10, 10])
703 704 705
            linear = paddle.nn.Linear(
                10, 10, weight_attr=weight_attr, bias_attr=bias_attr
            )
706 707 708 709 710
            out = linear(x)
            loss = paddle.mean(out)
            optimizer = paddle.optimizer.Momentum(
                learning_rate=0.01,
                momentum=0.9,
711 712
                weight_decay=paddle.regularizer.L2Decay(0.5),
            )
713 714 715 716 717 718 719 720
            optimizer.minimize(loss)
        return main_program

    def test_param_has_l2decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
721 722
            regularizer=paddle.regularizer.L2Decay(0.1),
        )
723 724 725 726 727 728 729 730 731 732 733 734 735 736
        program = self.get_program(weight_attr, bias_attr=False)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.1))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)

    def test_param_has_l1decay(self):
        paddle.enable_static()
        weight_attr = paddle.ParamAttr(
            name="weight",
            initializer=paddle.nn.initializer.Constant(value=0.5),
737 738
            regularizer=paddle.regularizer.L1Decay(0.1),
        )
739 740
        bias_attr = paddle.ParamAttr(
            name="bias",
741 742 743
            initializer=paddle.nn.initializer.Constant(value=0.0),
            regularizer=None,
        )
744 745 746 747 748 749 750 751
        program = self.get_program(weight_attr, bias_attr)
        ops = program.global_block().ops

        self.assertEqual(ops[-1].type, 'momentum')
        self.assertEqual(ops[-2].type, 'momentum')
        self.assertEqual(ops[-3].type, 'sum')
        self.assertEqual(ops[-4].type, 'scale')
        self.assertEqual(ops[-5].type, 'sign')
752
        self.assertEqual(ops[-6].type, 'matmul_v2_grad')
753 754 755 756 757
        if 'weight' in ops[-1].input('Param'):
            self.assertEqual(ops[-1].attr('regularization_method'), '')
            self.assertEqual(ops[-1].attr('regularization_coeff'), 0)
        if 'bias' in ops[-2].input('Param'):
            self.assertEqual(ops[-2].attr('regularization_method'), 'l2_decay')
758 759 760
            self.assertEqual(
                ops[-2].attr('regularization_coeff'), np.float32(0.5)
            )
761 762 763 764 765 766 767 768 769 770 771 772

    def test_param_has_no_regularizer(self):
        paddle.enable_static()
        program = self.get_program(weight_attr=None)
        ops = program.global_block().ops
        self.assertEqual(ops[-1].attr('regularization_method'), 'l2_decay')
        self.assertEqual(ops[-1].attr('regularization_coeff'), np.float32(0.5))
        for i in range(len(ops)):
            self.assertTrue('sum' not in ops[i].type)
            self.assertTrue('scale' not in ops[i].type)


773 774 775
class TestMomentumOpVsMomentumOpWithDecayAPI(unittest.TestCase):
    def __update_params(self, momentum, linear):
        for i in range(10):
776 777 778
            inp = paddle.full(
                shape=[2, 2], fill_value=i, dtype='float32'
            ).astype("float32")
779 780 781 782 783
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            loss.backward()
            momentum.minimize(loss)
784
            linear.clear_gradients()
785 786 787 788 789 790 791 792

    def __test_vs(self, place=fluid.CPUPlace()):
        paddle.disable_static(place=place)

        linear_old = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
793 794
            bias_attr=paddle.nn.initializer.Constant(value=2.0),
        )
795 796 797 798 799
        momentum_old = paddle.fluid.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_old.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
800 801 802
                regularization_coeff=0.1
            ),
        )
803 804 805 806 807 808
        self.__update_params(momentum=momentum_old, linear=linear_old)

        linear_new = paddle.nn.Linear(
            2,
            2,
            weight_attr=paddle.nn.initializer.Constant(value=2.0),
809 810
            bias_attr=paddle.nn.initializer.Constant(value=2.0),
        )
811 812 813 814 815
        momentum_new = paddle.fluid.contrib.optimizer.Momentum(
            learning_rate=0.01,
            momentum=0.9,
            parameter_list=linear_new.parameters(),
            regularization=paddle.fluid.regularizer.L2Decay(
816 817 818
                regularization_coeff=0.1
            ),
        )
819 820 821 822 823
        self.__update_params(momentum=momentum_new, linear=linear_new)

        self.assertEqual(
            (linear_old.weight.numpy() == linear_new.weight.numpy()).all(),
            True,
824 825
            'the param weight updated by two Momentum optimizers should equal',
        )
826 827 828 829 830 831 832 833 834 835

    def test_vs(self, place=fluid.CPUPlace()):
        places = [fluid.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            self.__test_vs(place=place)


836 837 838 839 840 841 842 843
class TestMomentumV2Group(TestMomentumV2):
    def test_momentum_dygraph(self):
        paddle.disable_static()
        value = np.arange(26).reshape(2, 13).astype("float32")
        a = paddle.to_tensor(value)
        linear_1 = paddle.nn.Linear(13, 5)
        linear_2 = paddle.nn.Linear(5, 3)
        # This can be any optimizer supported by dygraph.
844 845 846 847 848 849 850 851 852 853 854 855 856 857
        adam = paddle.optimizer.Momentum(
            learning_rate=0.01,
            parameters=[
                {'params': linear_1.parameters()},
                {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'momentum': 0.99,
                },
            ],
            weight_decay=0.1,
            momentum=0.9,
        )
858 859 860 861 862 863 864
        out = linear_1(a)
        out = linear_2(out)
        out.backward()
        adam.step()
        adam.clear_gradients()


865
class TestMultiTensorMomentumDygraph(unittest.TestCase):
866 867 868 869 870 871 872 873
    def _momentum_optimize_dygraph(
        self,
        place,
        use_param_attr=False,
        use_param_group=False,
        use_amp=False,
        use_multi_tensor=False,
    ):
874 875 876 877 878 879 880
        paddle.disable_static()
        paddle.seed(10)
        paddle.set_device(place)
        input = paddle.randn((5, 5))
        weight_attr = paddle.ParamAttr(
            learning_rate=0.5,
            regularizer=paddle.regularizer.L2Decay(1.0),
881 882
            trainable=True,
        )
883 884 885 886 887 888 889 890
        if use_param_attr:
            model = paddle.nn.Linear(5, 5, weight_attr)
        else:
            model = paddle.nn.Linear(5, 5)
        if not use_param_group:
            optimizer = paddle.optimizer.Momentum(
                parameters=model.parameters(),
                use_multi_tensor=use_multi_tensor,
891 892
                multi_precision=use_amp,
            )
893
        else:
894 895
            parameters = list(model.parameters())
            n = len(parameters)
896
            optimizer = paddle.optimizer.Momentum(
897 898 899 900 901 902 903 904 905 906 907 908 909 910
                parameters=[
                    {
                        'params': parameters[: int(n / 2)],
                        'weight_decay': 0.001,
                        'learning_rate': 0.1,
                        'momentum': 0.99,
                    },
                    {
                        'params': parameters[int(n / 2) :],
                        'weight_decay': 0.001,
                        'learning_rate': 0.1,
                        'momentum': 0.99,
                    },
                ],
911
                use_multi_tensor=use_multi_tensor,
912 913
                multi_precision=use_amp,
            )
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
        for idx in range(5):
            if place == 'gpu' and use_amp == True:
                model = paddle.amp.decorate(models=model, level='O2')
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
            if place == 'gpu' and use_amp == True:
                with paddle.amp.auto_cast(level='O2'):
                    output = model(input)
                    loss = paddle.mean(output)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.step(optimizer)
                optimizer.clear_grad(set_to_zero=False)
            else:
                output = model(input)
                loss = paddle.mean(output)
                # This can be any optimizer supported by dygraph.
                loss.backward()
                optimizer.step()
                optimizer.clear_grad(set_to_zero=False)
        return output, model.parameters()

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
943 944
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
945
        output2, params2 = self._momentum_optimize_dygraph(
946 947
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
H
hong 已提交
948

949
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
950
        for idx in range(len(params1)):
951
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
952 953 954 955 956 957

    def _check_with_param_arrt(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
958 959
            use_multi_tensor=True,
        )
960 961 962 963
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_attr=True,
964 965
            use_multi_tensor=False,
        )
966
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
967
        for idx in range(len(params1)):
968
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
969 970 971 972 973 974

    def _check_with_param_group(self, place, use_amp):
        output1, params1 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
975 976
            use_multi_tensor=True,
        )
977 978 979 980
        output2, params2 = self._momentum_optimize_dygraph(
            place=place,
            use_amp=use_amp,
            use_param_group=True,
981 982
            use_multi_tensor=False,
        )
983
        np.testing.assert_allclose(output1, output2, rtol=1e-05)
984
        for idx in range(len(params1)):
985
            np.testing.assert_allclose(params1[idx], params2[idx], rtol=1e-05)
986 987 988 989 990 991 992 993 994

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)
                self._check_with_param_arrt(place, use_amp)
                self._check_with_param_group(place, use_amp)

995 996 997 998
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_main()

999 1000

class TestMultiTensorMomentumStatic(unittest.TestCase):
1001 1002 1003
    def _momentum_optimize_static(
        self, place, use_amp=False, use_multi_tensor=False
    ):
1004 1005 1006 1007 1008 1009 1010 1011
        paddle.enable_static()
        paddle.seed(10)
        np.random.seed(10)
        if place == 'cpu':
            use_amp = False
        exe = paddle.static.Executor(place=place)
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
1012 1013 1014
        optimizer = paddle.optimizer.Momentum(
            multi_precision=use_amp, use_multi_tensor=use_multi_tensor
        )
1015 1016 1017 1018 1019 1020
        if use_amp:
            optimizer = paddle.static.amp.decorate(
                optimizer,
                init_loss_scaling=128.0,
                use_dynamic_loss_scaling=True,
                use_pure_fp16=True,
1021 1022
                use_fp16_guard=False,
            )
1023 1024
        with paddle.static.program_guard(train_program, startup_program):
            if use_amp:
1025 1026 1027
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float16'
                )
1028
            else:
1029 1030 1031
                data = paddle.static.data(
                    shape=[2, 2], name='X', dtype='float32'
                )
1032
            hidden = paddle.static.nn.fc(x=data, size=10)
1033
            loss = paddle.mean(hidden)
1034 1035 1036 1037 1038 1039 1040 1041 1042
            optimizer.minimize(loss)
        exe.run(startup_program)
        if use_amp:
            optimizer.amp_init(place=place, scope=paddle.static.global_scope())
            x = numpy.random.random(size=(2, 2)).astype('float16')
        else:
            x = numpy.random.random(size=(2, 2)).astype('float32')
        out = []
        for idx in range(5):
1043 1044 1045
            (loss_data,) = exe.run(
                train_program, feed={"X": x}, fetch_list=[loss.name]
            )
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
            out.append(loss_data)
        return out

    def _get_places(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        return places

    def _check_with_place_amp(self, place, use_amp):
1056 1057 1058 1059 1060 1061
        output1 = self._momentum_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=True
        )
        output2 = self._momentum_optimize_static(
            place=place, use_amp=use_amp, use_multi_tensor=False
        )
1062
        for idx in range(len(output1)):
1063
            np.testing.assert_allclose(output1[idx], output2[idx], rtol=1e-05)
1064 1065 1066 1067 1068 1069 1070 1071

    def test_main(self):
        for place in self._get_places():
            use_amp_list = [True, False]
            for use_amp in use_amp_list:
                self._check_with_place_amp(place, use_amp)


S
sidgoyal78 已提交
1072
if __name__ == "__main__":
H
hong 已提交
1073
    paddle.enable_static()
S
sidgoyal78 已提交
1074
    unittest.main()