index_sample_op.h 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <gflags/gflags.h>
#include <cmath>
#include <fstream>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DDim = framework::DDim;

template <typename T, typename IndexT = int>
void IndexSampleInner(const framework::ExecutionContext &context,
                      const LoDTensor &input, const LoDTensor &index,
                      LoDTensor *output) {
  auto input_dims = input.dims();
  auto index_dims = index.dims();

  int batch_size = input_dims[0];
  auto value_length = input_dims[1];
  auto index_length = index_dims[1];
  int index_ids_num = index.numel();
  auto *input_data = input.data<T>();
  auto *index_data = index.data<IndexT>();

  std::vector<T> res{};
  for (int i = 0; i < index_ids_num; i++) {
    int b = floor(i / index_length);
    PADDLE_ENFORCE_GE(
        index_data[i], 0,
        platform::errors::InvalidArgument(
            "Variable value (index) of OP(index_sample) "
            "expected >= 0 and < %ld, but got %ld. Please check input "
            "value.",
            value_length, index_data[i]));
    PADDLE_ENFORCE_LT(
        index_data[i], value_length,
        platform::errors::InvalidArgument(
            "Variable value (index) of OP(index_sample) "
            "expected >= 0 and < %ld, but got %ld. Please check input "
            "value.",
            value_length, index_data[i]));

    int v_i = b * value_length + static_cast<int>(index_data[i]);
    T v = input_data[v_i];
    VLOG(4) << "Index Sample: batch = " << b << " index = " << v_i
            << " value = " << v;
    res.push_back(v);
  }

  auto ddim = framework::make_ddim({batch_size, index_length});
  output->Resize(ddim);
  T *out_data = output->mutable_data<T>(context.GetPlace());

  memcpy(out_data, &res[0], sizeof(T) * index_ids_num);
}

template <typename DeviceContext, typename T>
class IndexSampleKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *input_var = ctx.InputVar("X");
    auto *index_var = ctx.InputVar("Index");

    auto &input_tensor = input_var->Get<LoDTensor>();
    auto &index_tensor = index_var->Get<LoDTensor>();

    auto *out_var = ctx.OutputVar("Out");
    auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();

    const auto &index_type = index_tensor.type();
    bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                            index_type == framework::proto::VarType::INT64;
    PADDLE_ENFORCE_EQ(index_type_match, true,
                      platform::errors::InvalidArgument(
                          "Input(Index) holds the wrong type, it holds %s, but "
                          "desires to be %s or %s",
                          paddle::framework::DataTypeToString(index_type),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT32),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT64)));
    if (index_type == framework::proto::VarType::INT32) {
      IndexSampleInner<T, int>(ctx, input_tensor, index_tensor, out_tensor);
    } else if (index_type == framework::proto::VarType::INT64) {
      IndexSampleInner<T, int64_t>(ctx, input_tensor, index_tensor, out_tensor);
    }
  }
};

template <typename T, typename IndexT = int>
void IndexSampleGradInner(const framework::ExecutionContext &context,
                          const LoDTensor &out_grad, const LoDTensor &index,
                          LoDTensor *x_grad) {
  auto index_dims = index.dims();
  auto x_grad_dims = x_grad->dims();

  int batch_size = x_grad_dims[0];
  auto value_length = x_grad_dims[1];
  auto index_length = index_dims[1];
  int index_ids_num = index.numel();

  T *x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
  auto *out_grad_data = out_grad.data<T>();
  auto *index_data = index.data<IndexT>();

  memset(x_grad_data, 0, batch_size * value_length * sizeof(T));

  for (int i = 0; i < index_ids_num; i++) {
    int b = floor(i / index_length);
    PADDLE_ENFORCE_GE(
        index_data[i], 0,
        platform::errors::InvalidArgument(
            "Variable value (index) of OP(index_sample_grad) "
            "expected >= 0 and < %ld, but got %ld. Please check input "
            "value.",
            value_length, index_data[i]));
    PADDLE_ENFORCE_LT(
        index_data[i], value_length,
        platform::errors::InvalidArgument(
            "Variable value (index) of OP(index_sample_grad) "
            "expected >= 0 and < %ld, but got %ld. Please check input "
            "value.",
            value_length, index_data[i]));
    int v_i = b * value_length + static_cast<int>(index_data[i]);
    x_grad_data[v_i] += out_grad_data[i];
  }
}

template <typename DeviceContext, typename T>
class IndexSampleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *index_var = context.InputVar("Index");
    auto *x_grad_var = context.OutputVar(framework::GradVarName("X"));
    auto *out_grad_var = context.InputVar(framework::GradVarName("Out"));

    auto &index_tensor = index_var->Get<LoDTensor>();
    auto &out_grad_tensor = out_grad_var->Get<LoDTensor>();
    auto *x_grad_tensor = x_grad_var->GetMutable<framework::LoDTensor>();

    const auto &index_type = index_tensor.type();
    bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                            index_type == framework::proto::VarType::INT64;
    PADDLE_ENFORCE_EQ(index_type_match, true,
                      platform::errors::InvalidArgument(
                          "Input(Index) holds the wrong type, it holds %s, but "
                          "desires to be %s or %s",
                          paddle::framework::DataTypeToString(index_type),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT32),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT64)));
    if (index_type == framework::proto::VarType::INT32) {
      IndexSampleGradInner<T, int>(context, out_grad_tensor, index_tensor,
                                   x_grad_tensor);
    } else if (index_type == framework::proto::VarType::INT64) {
      IndexSampleGradInner<T, int64_t>(context, out_grad_tensor, index_tensor,
                                       x_grad_tensor);
    }
  }
};

}  // namespace operators
}  // namespace paddle