Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
92cc33c0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
92cc33c0
编写于
4月 09, 2020
作者:
C
Chengmo
提交者:
GitHub
4月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Cherry-pick index sample op in contrib (#23522)
* test=develop, add index sample op in contrib
上级
ada787db
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
530 addition
and
1 deletion
+530
-1
paddle/fluid/operators/index_sample_op.cc
paddle/fluid/operators/index_sample_op.cc
+158
-0
paddle/fluid/operators/index_sample_op.h
paddle/fluid/operators/index_sample_op.h
+183
-0
python/paddle/fluid/contrib/layers/nn.py
python/paddle/fluid/contrib/layers/nn.py
+62
-1
python/paddle/fluid/tests/unittests/test_index_sample_op.py
python/paddle/fluid/tests/unittests/test_index_sample_op.py
+127
-0
未找到文件。
paddle/fluid/operators/index_sample_op.cc
0 → 100644
浏览文件 @
92cc33c0
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/index_sample_op.h"
#include <memory>
#include <vector>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
class
IndexSampleOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"Input(Tensor), dtype support int32/int64/float/double"
);
AddInput
(
"Index"
,
"Index(Tensor), dtype support int32/int64"
);
AddOutput
(
"Out"
,
"Return the element of input at index"
);
AddComment
(
R"DOC(
IndexSample OP returns the element of the specified location of X,
and the location is specified by Index.
X tensor and Index tensor's shape must be 2-D,
dimension at 0 which usually is batch size must be equal.
The returned tensor has the same shape and dimensions as the Index tensor.
)DOC"
);
}
};
class
IndexSampleOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Inputs(Input) of FindByIndex should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Index"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Inputs(Index) of FindByIndex should not be null."
));
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Inputs(X) shape of IndexSample op should be 2-D, but "
"got X's shape = [%s], please check X shape."
,
input_dims
));
auto
index_dims
=
ctx
->
GetInputDim
(
"Index"
);
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"Inputs(Index) shape of IndexSample op should be 2-D, but "
"got Index's shape [%s] , please check index shape."
,
input_dims
));
if
(
ctx
->
IsRuntime
())
{
PADDLE_ENFORCE_EQ
(
input_dims
[
0
],
index_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"Inputs(X)'s value of dimension 0 must same with "
"Inputs(Index)'s value of dimension 0, but "
"got %d of Inputs(X), and got %d of Inputs(Index), "
"please check Inputs shape."
,
input_dims
[
0
],
index_dims
[
0
]));
}
ctx
->
SetOutputDim
(
"Out"
,
index_dims
);
auto
type
=
ctx
->
GetInputsVarType
(
"Index"
)[
0
];
if
(
type
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
ctx
->
ShareLoD
(
"Index"
,
/*->*/
"Out"
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
IndexSampleGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Index"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Index) should be not null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Out@GRAD) should be not null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(X@GRAD) should be not null."
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
template
<
typename
T
>
class
IndexSampleGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
std
::
unique_ptr
<
T
>
Apply
()
const
override
{
std
::
unique_ptr
<
T
>
op
(
new
T
());
op
->
SetType
(
"index_sample_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"Index"
,
this
->
Input
(
"Index"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
return
op
;
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE
(
IndexSampleGradNoNeedBufferVarInferer
,
"X"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
index_sample
,
ops
::
IndexSampleOp
,
ops
::
IndexSampleOpMaker
,
ops
::
IndexSampleGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
IndexSampleGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
index_sample_grad
,
ops
::
IndexSampleGradOp
,
ops
::
IndexSampleGradNoNeedBufferVarInferer
);
REGISTER_OP_CPU_KERNEL
(
index_sample
,
ops
::
IndexSampleKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
IndexSampleKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
IndexSampleKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
IndexSampleKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
index_sample_grad
,
ops
::
IndexSampleGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
IndexSampleGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
IndexSampleGradKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
IndexSampleGradKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
paddle/fluid/operators/index_sample_op.h
0 → 100644
浏览文件 @
92cc33c0
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <cmath>
#include <fstream>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DDim
=
framework
::
DDim
;
template
<
typename
T
,
typename
IndexT
=
int
>
void
IndexSampleInner
(
const
framework
::
ExecutionContext
&
context
,
const
LoDTensor
&
input
,
const
LoDTensor
&
index
,
LoDTensor
*
output
)
{
auto
input_dims
=
input
.
dims
();
auto
index_dims
=
index
.
dims
();
int
batch_size
=
input_dims
[
0
];
auto
value_length
=
input_dims
[
1
];
auto
index_length
=
index_dims
[
1
];
int
index_ids_num
=
index
.
numel
();
auto
*
input_data
=
input
.
data
<
T
>
();
auto
*
index_data
=
index
.
data
<
IndexT
>
();
std
::
vector
<
T
>
res
{};
for
(
int
i
=
0
;
i
<
index_ids_num
;
i
++
)
{
int
b
=
floor
(
i
/
index_length
);
PADDLE_ENFORCE_GE
(
index_data
[
i
],
0
,
platform
::
errors
::
InvalidArgument
(
"Variable value (index) of OP(index_sample) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
value_length
,
index_data
[
i
]));
PADDLE_ENFORCE_LT
(
index_data
[
i
],
value_length
,
platform
::
errors
::
InvalidArgument
(
"Variable value (index) of OP(index_sample) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
value_length
,
index_data
[
i
]));
int
v_i
=
b
*
value_length
+
static_cast
<
int
>
(
index_data
[
i
]);
T
v
=
input_data
[
v_i
];
VLOG
(
4
)
<<
"Index Sample: batch = "
<<
b
<<
" index = "
<<
v_i
<<
" value = "
<<
v
;
res
.
push_back
(
v
);
}
auto
ddim
=
framework
::
make_ddim
({
batch_size
,
index_length
});
output
->
Resize
(
ddim
);
T
*
out_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
memcpy
(
out_data
,
&
res
[
0
],
sizeof
(
T
)
*
index_ids_num
);
}
template
<
typename
DeviceContext
,
typename
T
>
class
IndexSampleKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input_var
=
ctx
.
InputVar
(
"X"
);
auto
*
index_var
=
ctx
.
InputVar
(
"Index"
);
auto
&
input_tensor
=
input_var
->
Get
<
LoDTensor
>
();
auto
&
index_tensor
=
index_var
->
Get
<
LoDTensor
>
();
auto
*
out_var
=
ctx
.
OutputVar
(
"Out"
);
auto
*
out_tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
const
auto
&
index_type
=
index_tensor
.
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
IndexSampleInner
<
T
,
int
>
(
ctx
,
input_tensor
,
index_tensor
,
out_tensor
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
IndexSampleInner
<
T
,
int64_t
>
(
ctx
,
input_tensor
,
index_tensor
,
out_tensor
);
}
}
};
template
<
typename
T
,
typename
IndexT
=
int
>
void
IndexSampleGradInner
(
const
framework
::
ExecutionContext
&
context
,
const
LoDTensor
&
out_grad
,
const
LoDTensor
&
index
,
LoDTensor
*
x_grad
)
{
auto
index_dims
=
index
.
dims
();
auto
x_grad_dims
=
x_grad
->
dims
();
int
batch_size
=
x_grad_dims
[
0
];
auto
value_length
=
x_grad_dims
[
1
];
auto
index_length
=
index_dims
[
1
];
int
index_ids_num
=
index
.
numel
();
T
*
x_grad_data
=
x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
out_grad_data
=
out_grad
.
data
<
T
>
();
auto
*
index_data
=
index
.
data
<
IndexT
>
();
memset
(
x_grad_data
,
0
,
batch_size
*
value_length
*
sizeof
(
T
));
for
(
int
i
=
0
;
i
<
index_ids_num
;
i
++
)
{
int
b
=
floor
(
i
/
index_length
);
PADDLE_ENFORCE_GE
(
index_data
[
i
],
0
,
platform
::
errors
::
InvalidArgument
(
"Variable value (index) of OP(index_sample_grad) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
value_length
,
index_data
[
i
]));
PADDLE_ENFORCE_LT
(
index_data
[
i
],
value_length
,
platform
::
errors
::
InvalidArgument
(
"Variable value (index) of OP(index_sample_grad) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
value_length
,
index_data
[
i
]));
int
v_i
=
b
*
value_length
+
static_cast
<
int
>
(
index_data
[
i
]);
x_grad_data
[
v_i
]
+=
out_grad_data
[
i
];
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
IndexSampleGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
index_var
=
context
.
InputVar
(
"Index"
);
auto
*
x_grad_var
=
context
.
OutputVar
(
framework
::
GradVarName
(
"X"
));
auto
*
out_grad_var
=
context
.
InputVar
(
framework
::
GradVarName
(
"Out"
));
auto
&
index_tensor
=
index_var
->
Get
<
LoDTensor
>
();
auto
&
out_grad_tensor
=
out_grad_var
->
Get
<
LoDTensor
>
();
auto
*
x_grad_tensor
=
x_grad_var
->
GetMutable
<
framework
::
LoDTensor
>
();
const
auto
&
index_type
=
index_tensor
.
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
IndexSampleGradInner
<
T
,
int
>
(
context
,
out_grad_tensor
,
index_tensor
,
x_grad_tensor
);
}
else
if
(
index_type
==
framework
::
proto
::
VarType
::
INT64
)
{
IndexSampleGradInner
<
T
,
int64_t
>
(
context
,
out_grad_tensor
,
index_tensor
,
x_grad_tensor
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/contrib/layers/nn.py
浏览文件 @
92cc33c0
...
...
@@ -25,7 +25,7 @@ from paddle.fluid.layer_helper import LayerHelper
from
paddle.fluid.layers
import
utils
from
...
import
unique_name
from
paddle.fluid.initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
paddle.fluid.data_feeder
import
check_type
,
check_dtype
,
convert_dtype
from
paddle.fluid.data_feeder
import
check_type
_and_dtype
,
check_type
,
check_dtype
,
convert_dtype
from
paddle.fluid.framework
import
Variable
,
convert_np_dtype_to_dtype_
from
paddle.fluid.layers
import
slice
,
reshape
...
...
@@ -39,6 +39,7 @@ __all__ = [
'multiclass_nms2'
,
'search_pyramid_hash'
,
'shuffle_batch'
,
'index_sample'
,
'tdm_child'
,
'tdm_sampler'
,
]
...
...
@@ -816,6 +817,66 @@ def shuffle_batch(x, seed=None):
return
out
def
index_sample
(
x
,
index
):
"""
**IndexSample Layer**
IndexSample OP returns the element of the specified location of X,
and the location is specified by Index.
.. code-block:: text
Given:
X = [[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10]]
Index = [[0, 1, 3],
[0, 2, 4]]
Then:
Out = [[1, 2, 4],
[6, 8, 10]]
Args:
x (Variable): The source input tensor with 2-D shape. Supported data type is
int32, int64, float32, float64.
index (Variable): The index input tensor with 2-D shape, first dimension should be same with X.
Data type is int32 or int64.
Returns:
output (Variable): The output is a tensor with the same shape as index.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
# create x value
x_shape = (2, 5)
x_type = "float64"
x_np = np.random.random(x_shape).astype(x_type)
# create index value
index_shape = (2, 3)
index_type = "int32"
index_np = np.random.randint(low=0,
high=x_shape[1],
size=index_shape).astype(index_type)
x = fluid.data(name='x', shape=[-1, 5], dtype='float64')
index = fluid.data(name='index', shape=[-1, 3], dtype='int32')
output = fluid.contrib.layers.index_sample(x=x, index=index)
"""
helper
=
LayerHelper
(
"index_sample"
,
**
locals
())
check_type_and_dtype
(
x
,
'x'
,
Variable
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'fluid.contrib.layers.index_sample'
)
check_type_and_dtype
(
index
,
'index'
,
Variable
,
[
'int32'
,
'int64'
],
'fluid.contrib.layers.index_sample'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'index_sample'
,
inputs
=
{
'X'
:
x
,
'Index'
:
index
},
outputs
=
{
'Out'
:
out
})
return
out
def
tdm_child
(
x
,
node_nums
,
child_nums
,
param_attr
=
None
,
dtype
=
'int32'
):
"""
**Tdm Child**
...
...
python/paddle/fluid/tests/unittests/test_index_sample_op.py
0 → 100644
浏览文件 @
92cc33c0
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestIndexSampleOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"index_sample"
self
.
config
()
xnp
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
x_type
)
indexnp
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
x_shape
[
1
],
size
=
self
.
index_shape
).
astype
(
self
.
index_type
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
indexnp
}
index_array
=
[]
for
i
in
range
(
self
.
index_shape
[
0
]):
for
j
in
indexnp
[
i
]:
index_array
.
append
(
xnp
[
i
,
j
])
out
=
np
.
reshape
(
index_array
,
self
.
index_shape
)
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
def
config
(
self
):
"""
For multi-dimension input
"""
self
.
x_shape
=
(
10
,
20
)
self
.
x_type
=
"float64"
self
.
index_shape
=
(
10
,
10
)
self
.
index_type
=
"int32"
class
TestCase1
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For one dimension input
"""
self
.
x_shape
=
(
100
,
1
)
self
.
x_type
=
"float64"
self
.
index_shape
=
(
100
,
1
)
self
.
index_type
=
"int32"
class
TestCase2
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For int64_t index type
"""
self
.
x_shape
=
(
10
,
100
)
self
.
x_type
=
"float64"
self
.
index_shape
=
(
10
,
10
)
self
.
index_type
=
"int64"
class
TestCase3
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For int index type
"""
self
.
x_shape
=
(
10
,
100
)
self
.
x_type
=
"float64"
self
.
index_shape
=
(
10
,
10
)
self
.
index_type
=
"int32"
class
TestCase4
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For int64 index type
"""
self
.
x_shape
=
(
10
,
100
)
self
.
x_type
=
"float64"
self
.
index_shape
=
(
10
,
10
)
self
.
index_type
=
"int64"
class
TestIndexSampleShape
(
unittest
.
TestCase
):
def
test_shape
(
self
):
import
paddle.fluid
as
fluid
import
paddle
# create x value
x_shape
=
(
2
,
5
)
x_type
=
"float64"
x_np
=
np
.
random
.
random
(
x_shape
).
astype
(
x_type
)
# create index value
index_shape
=
(
2
,
3
)
index_type
=
"int32"
index_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
x_shape
[
1
],
size
=
index_shape
).
astype
(
index_type
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
5
],
dtype
=
'float64'
)
index
=
fluid
.
data
(
name
=
'index'
,
shape
=
[
-
1
,
3
],
dtype
=
'int32'
)
output
=
fluid
.
contrib
.
layers
.
index_sample
(
x
=
x
,
index
=
index
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feed
=
{
'x'
:
x_np
,
'index'
:
index_np
}
res
=
exe
.
run
(
feed
=
feed
,
fetch_list
=
[
output
])
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录