profiler.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
import traceback
import pickle
import json
import time

import paddle
from paddle.fluid.framework import Program, _current_expected_place
24
from paddle.fluid.framework import Operator
25 26 27 28 29 30 31
from paddle.distributed.auto_parallel.process_group import (
    get_all_process_groups,
    new_process_group,
)
from paddle.distributed.auto_parallel.dist_loader import (
    DistributedDataLoaderFromGenerator,
)
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
from paddle.distributed.collective import _get_global_env

paddle.enable_static()


def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Unsupported value encountered.')


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--profile_start_step",
        default=10,
        type=int,
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        help="integer indicates the warmup step before starting profile.",
    )
    parser.add_argument(
        "--profile_end_step",
        default=30,
        type=int,
        help="integer indicates at the end step of profile.",
    )
    parser.add_argument(
        "--rank",
        type=int,
        required=True,
        help="the rank id of the this process.",
    )
    parser.add_argument(
        "--device_id",
        type=int,
        required=True,
        help="the device id of the this process.",
    )
72 73 74 75
    parser.add_argument(
        "--ctx_filename",
        type=str,
        required=True,
76 77
        help="the filename to the profile context file saved by optimizaiton tuner",
    )
78 79 80 81 82 83 84 85

    args = parser.parse_args()

    return args


def init_process_groups(group_map, rank):
    for group_id, ranks in group_map.items():
86
        if group_id == 1000:
87 88 89 90 91 92
            continue
        new_process_group(ranks=ranks, group_id=group_id)

    # TODO should instantiate global group first
    all_process_groups = get_all_process_groups()
    for process_group in all_process_groups:
93
        if process_group.id == 1000 or rank not in process_group.ranks:
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            continue
        print(process_group)
        process_group.instantiate()


def get_cpp_error_type(error):

    msg = str(error).splitlines()
    cpp_error_types = [
        'InvalidArgumentError',
        'NotFoundError',
        'OutOfRangeError',
        'AlreadyExistsError',
        'ResourceExhaustedError',
        'PreconditionNotMetError',
        'PermissionDeniedError',
        'ExecutionTimeoutError',
        'UnimplementedError',
        'UnavailableError',
        'FatalError',
        'ExternalError',
    ]
    error_type = 'FatalError'
    for et in cpp_error_types:
        for line in msg:
            if et in line:
                return et
    return error_type


124 125 126
def create_dataloader(
    main_program, startup_program, profile_ctx, epochs=1, steps_per_epoch=None
):
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    dataset = profile_ctx["dataset"]
    main_block = main_program.global_block()
    feed_list = []
    for name in dataset.input_names:
        if name in main_block.vars:
            feed_list.append(main_block.vars[name])

    # remove the first three ops if multi run fit/evaluate/predict
    op_size = len(main_block.ops)
    if main_block.ops[0].type == 'create_py_reader':
        op_size -= 3
        for _ in range(3):
            main_block._remove_op(0, sync=False)

    # insert read op at the end of program
    places = paddle.static.cuda_places()
    with paddle.static.program_guard(main_program, startup_program):
145 146 147 148 149 150 151 152
        dataloader = DistributedDataLoaderFromGenerator(
            dataset=dataset,
            feed_list=feed_list,
            capacity=70,
            places=places,
            batch_size=dataset.batch_size,
            epochs=epochs,
            steps_per_epoch=steps_per_epoch,
153
            data_parallel_world_size=dataset.dp_world_size,
154 155
            data_parallel_rank=dataset.dp_rank,
        )
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    # move read op from the end of program to the start of program
    new_op_size = len(main_block.ops)
    for _ in range(new_op_size - 1, op_size - 1, -1):
        op = main_block.ops[new_op_size - 1]
        new_op_desc = main_block.desc._prepend_op()
        new_op_desc.copy_from(op.desc)
        new_op = Operator(main_block, new_op_desc, type=new_op_desc.type())
        main_block.ops.insert(0, new_op)
    for _ in range(new_op_size - op_size):
        main_block._remove_op(new_op_size, sync=False)
    main_block._sync_with_cpp()
    return dataloader


def init_comm(profile_ctx):
    # override the env for current process
    dist_env = profile_ctx['distributed_env']
    genv = _get_global_env()
    genv = dist_env
176 177 178 179 180 181
    print(
        "current process rank: {}, device_id: {}, ip: {}.",
        genv.rank,
        genv.device_id,
        genv.current_endpoint,
    )
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    # init nccl comm
    group_map = profile_ctx['group_map']
    init_process_groups(group_map, args.rank)


def load_programs(profile_ctx):
    main_program_desc_str = profile_ctx['main_program_decs']
    main_program = Program.parse_from_string(main_program_desc_str)

    startup_program_decs_str = profile_ctx['startup_program_decs']
    startup_program = Program.parse_from_string(startup_program_decs_str)

    loss_var_name = profile_ctx["loss_var_name"]
    assert main_program.global_block().has_var(loss_var_name)
    loss_var = main_program.global_block().var(loss_var_name)

    return main_program, startup_program, loss_var


def get_executor():
    place_type = _current_expected_place()
    if not isinstance(place_type, paddle.CUDAPlace):
        raise RuntimeError("OptimizationTuner only support CUDA GPU right now.")

    genv = _get_global_env()
    place = paddle.CUDAPlace(genv.device_id)
    exe = paddle.static.Executor(place)
    return exe


def profiler(args):
    """
    main function to profile experiment for each pass hyper-parameter.
    """
    # load ctx
    if not os.path.isfile(args.ctx_filename):
219 220 221
        raise ValueError(
            "There is no profile context named {}.".format(args.ctx_filename)
        )
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    with open(args.ctx_filename, 'rb') as f:
        profile_ctx = pickle.load(f, encoding='latin1')

    init_comm(profile_ctx)

    main_program, startup_program, loss_var = load_programs(profile_ctx)

    data_loader = create_dataloader(main_program, startup_program, profile_ctx)

    result_path = profile_ctx["result_filename"]

    exe = get_executor()

    exe.run(startup_program)

    # profile main
    duration = 0
    eval_step = 0
    data_loader._inner_dataloader.start()
    try:
        while eval_step < args.profile_end_step:
            start_time = time.time()

            loss = exe.run(
                main_program,
                fetch_list=[loss_var],
                use_program_cache=True,
            )

            end_time = time.time()

            if eval_step >= args.profile_start_step:
                duration += end_time - start_time

            print("step: %d, loss_print: %f" % (eval_step, loss[0]))
            eval_step += 1

259 260 261
        avg_tput = (
            1.0 * (args.profile_end_step - args.profile_start_step) / duration
        )
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

        result_dict = {
            "Throughtput": avg_tput,
            "ErrorType": None,
        }

        if paddle.distributed.get_rank() == 0:
            with open(result_path, 'w') as fp:
                json.dump(result_dict, fp)

        print("profile done! avg speed : {} step / s.".format((avg_tput)))

    except paddle.framework.core.EOFException:
        data_loader._inner_dataloader.reset()

    except Exception as e:

        error_type = get_cpp_error_type(e)
        result_dict = {
            "Throughtput": -1,
            "ErrorType": error_type,
        }
        if not os.path.isfile(result_path):
            with open(result_path, 'w') as fp:
                json.dump(result_dict, fp)

        print("profile failed with error: [{}]".format(error_type))
        print(e)
        print(traceback.format_exc())

        data_loader._inner_dataloader.reset()
        del data_loader._inner_dataloader
        exit(1)

    data_loader._inner_dataloader.reset()
    del data_loader._inner_dataloader


if __name__ == "__main__":
    args = parse_args()
    profiler(args)