dist_op.py 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
import paddle
from paddle.fluid import core
from paddle.fluid.framework import Variable
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_attribute import append_op_input_suffix
from .dist_attribute import append_op_output_suffix
from .dist_attribute import get_tensor_dist_attr_field_keys
from .dist_attribute import get_op_dist_attr_field_keys
26
from .utils import convert_to_shard_spec, verify_shard_spec
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79


class DistributedOperator:
    def __init__(self, serial_op, dist_attr=None):
        self._serial_op = serial_op
        self._serial_inputs = {}
        self._serial_outputs = {}
        self._dist_attr = None
        # Reuse the dist_attr setter to initialize _dist_attr
        self.dist_attr = dist_attr

    @property
    def serial_op(self):
        return self._serial_op

    @property
    def dist_attr(self):
        return self._dist_attr

    @dist_attr.setter
    def dist_attr(self, dist_attr):
        if self._dist_attr is None:
            self._dist_attr = OperatorDistributedAttribute()
        # Create new dist_attr related to current serial_op
        dist_attr = self._filter_dist_attr(dist_attr)
        # Append suffix to mark the inputs or outputs
        if isinstance(dist_attr, dict):
            # Copy the keys since we may add new ones
            for key in list(dist_attr.keys()):
                if isinstance(key, Variable):
                    if key.name in self._serial_op.input_arg_names:
                        dist_attr[append_op_input_suffix(key.name)] = True
                    if key.name in self._serial_op.output_arg_names:
                        dist_attr[append_op_output_suffix(key.name)] = True
        self._dist_attr.init(dist_attr)
        self._init_default_dist_attr()

    def get_serial_input(self, name):
        return self._serial_inputs.get(name, None)

    def get_serial_output(self, name):
        return self._serial_outputs.get(name, None)

    def _init_default_dist_attr(self):
        for tensor_name in self._serial_op.input_arg_names:
            if self._serial_op.type == "create_py_reader":
                tensor = None
            else:
                tensor = self._serial_op.block._var_recursive(tensor_name)
            self._serial_inputs[tensor_name] = tensor
            if tensor is None:
                tensor_shape = []
            else:
80 81 82 83
                if (
                    tensor.type == core.VarDesc.VarType.READER
                    or tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                ):
84 85 86 87 88
                    tensor_shape = []
                else:
                    tensor_shape = tensor.shape
            if self._dist_attr.get_input_dims_mapping(tensor_name) is None:
                tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))]
89 90 91
                self._dist_attr.set_input_dims_mapping(
                    tensor_name, tensor_dims_mapping
                )
92 93
        for tensor_name in self._serial_op.output_arg_names:
            tensor = self._serial_op.block._var_recursive(tensor_name)
94 95 96 97 98
            if (
                tensor.type == core.VarDesc.VarType.READER
                or tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                or tensor.type == core.VarDesc.VarType.STEP_SCOPES
            ):
99 100 101 102 103 104
                tensor_shape = []
            else:
                tensor_shape = tensor.shape
            self._serial_outputs[tensor_name] = tensor
            if self._dist_attr.get_output_dims_mapping(tensor_name) is None:
                tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))]
105 106 107
                self._dist_attr.set_output_dims_mapping(
                    tensor_name, tensor_dims_mapping
                )
108 109
        if self._dist_attr.op_type is None:
            self._dist_attr.op_type = self.serial_op.type
110 111 112
        if self._dist_attr.impl_type is None:
            self._dist_attr.impl_type = "default"
        if self._dist_attr.impl_idx is None:
113
            self._dist_attr.impl_idx = 0
114 115
        if self._dist_attr.is_recompute is None:
            self._dist_attr.is_recompute = False
116 117 118 119 120 121 122 123 124

    def _filter_dist_attr(self, dist_attr):
        if dist_attr is None:
            return None
        new_dist_attr = None
        if isinstance(dist_attr, dict):
            new_dist_attr = {}
            for key, value in dist_attr.items():
                if isinstance(key, Variable):
125 126 127 128
                    if (
                        key.name in self._serial_op.input_arg_names
                        or key.name in self._serial_op.output_arg_names
                    ):
129 130 131 132 133 134 135 136 137 138
                        new_dist_attr[key] = value
                else:
                    new_dist_attr[key] = value
        elif isinstance(dist_attr, OperatorDistributedAttribute):
            new_dist_attr = copy.deepcopy(dist_attr)
            new_dist_attr._inputs_dist_attrs.clear()
            new_dist_attr._outputs_dist_attrs.clear()
            for tensor_name in self._serial_op.input_arg_names:
                tensor_dist_attr = dist_attr.get_input_dist_attr(tensor_name)
                if tensor_dist_attr:
139 140 141
                    new_dist_attr.set_input_dist_attr(
                        tensor_name, tensor_dist_attr
                    )
142 143 144
            for tensor_name in self._serial_op.output_arg_names:
                tensor_dist_attr = dist_attr.get_output_dist_attr(tensor_name)
                if tensor_dist_attr:
145 146 147
                    new_dist_attr.set_output_dist_attr(
                        tensor_name, tensor_dist_attr
                    )
148 149 150 151 152
        else:
            assert False, "Cannot recognize the {} parameter.".format(dist_attr)
        return new_dist_attr

    def validate_dist_attr(self):
153
        if "read" in self.serial_op.type or "while" == self.serial_op.type:
154 155 156 157
            return True
        for name in self.serial_op.input_arg_names:
            input_dist_attr = self.dist_attr.get_input_dist_attr(name)
            dims_mapping = input_dist_attr.dims_mapping
158 159 160 161
            if (
                self.get_serial_input(name).type
                == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ):
162 163 164
                shape = []
            else:
                shape = self.get_serial_input(name).shape
165 166 167 168
            if len(shape) != len(dims_mapping):
                return False
            for i in range(len(dims_mapping)):
                if dims_mapping[i] < -1 or dims_mapping[i] >= len(
169 170
                    self.dist_attr.process_mesh.topology
                ):
171 172 173 174 175 176 177 178 179 180
                    return False
            for i in range(len(self.dist_attr.process_mesh.topology)):
                if dims_mapping.count(i) > 1:
                    return False
            if self.dist_attr.process_mesh != input_dist_attr.process_mesh:
                return False

        for name in self.serial_op.output_arg_names:
            output_dist_attr = self.dist_attr.get_output_dist_attr(name)
            dims_mapping = output_dist_attr.dims_mapping
181 182 183 184 185 186
            if (
                self.get_serial_output(name).type
                == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                or self.get_serial_output(name).type
                == core.VarDesc.VarType.STEP_SCOPES
            ):
187 188 189
                shape = []
            else:
                shape = self.get_serial_output(name).shape
190 191 192 193
            if len(shape) != len(dims_mapping):
                return False
            for i in range(len(dims_mapping)):
                if dims_mapping[i] < -1 or dims_mapping[i] >= len(
194 195
                    self.dist_attr.process_mesh.topology
                ):
196 197 198 199 200 201 202 203 204
                    return False
            for i in range(len(self.dist_attr.process_mesh.topology)):
                if dims_mapping.count(i) > 1:
                    return False
            if self.dist_attr.process_mesh != output_dist_attr.process_mesh:
                return False
        return True

    def __str__(self):
205 206 207
        str = "{{op type: {}, op id: {}".format(
            self.serial_op.desc.type(), self.serial_op.desc.id()
        )
208 209 210 211 212 213 214 215

        # str += ", {}".format(self.dist_attr)
        # return str

        if self.dist_attr.is_annotated("process_mesh"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
216 217 218
        str += ", process_mesh ({}): {}".format(
            annotated_str, self.dist_attr.process_mesh
        )
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

        for arg_name in self.serial_op.desc.input_arg_names():
            dims_mapping = self.dist_attr.get_input_dims_mapping(arg_name)
            if self.dist_attr.is_annotated_input_dims_mapping(arg_name):
                annotated_str = "annotated"
            else:
                annotated_str = "non-annotated"
            if self.get_serial_input(arg_name) is not None:
                if self.get_serial_input(arg_name).is_parameter:
                    is_parameter_str = "parameter"
                else:
                    is_parameter_str = "non-parameter"
            else:
                is_parameter_str = "non-parameter"
            str += ", {}'s dims_mapping (input, {}, {}): {}".format(
234 235
                arg_name, annotated_str, is_parameter_str, dims_mapping
            )
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

        for arg_name in self.serial_op.desc.output_arg_names():
            dims_mapping = self.dist_attr.get_output_dims_mapping(arg_name)
            if self.dist_attr.is_annotated_output_dims_mapping(arg_name):
                annotated_str = "annotated"
            else:
                annotated_str = "non-annotated"
            if self.get_serial_output(arg_name) is not None:
                if self.get_serial_output(arg_name).is_parameter:
                    is_parameter_str = "parameter"
                else:
                    is_parameter_str = "non-parameter"
            else:
                is_parameter_str = "non-parameter"
            str += ", {}'s dims_mapping (output, {}, {}): {}".format(
251 252
                arg_name, annotated_str, is_parameter_str, dims_mapping
            )
253 254 255

        str += ", pipeline stage: {}".format(None)

256
        str += ", dist_impl idx: {} , dist_impl type {} }}".format(
257 258
            self.dist_attr._impl_idx, self.dist_attr._impl_type
        )
259 260 261

        return str

Z
zhaoyingli 已提交
262 263 264 265 266
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
267 268 269 270 271
            if (
                k == "_serial_op"
                or k == "_serial_inputs"
                or k == "_serial_outputs"
            ):
Z
zhaoyingli 已提交
272 273 274 275 276
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

277

278
class DistributedOperatorHelper:
279 280 281
    def __init__(
        self, serial_op, process_mesh, in_dims_mappings, out_dims_mappings
    ):
282 283 284 285
        self._serial_op = serial_op
        self._process_mesh = process_mesh
        self._in_dims_mappings = in_dims_mappings
        self._out_dims_mappings = out_dims_mappings
286 287

    def __call__(self, *args, **kwargs):
288 289 290
        tensor_to_dims_mapping = {}
        index = 0
        if self._in_dims_mappings:
291 292 293 294 295
            assert len(args) + len(kwargs) == len(
                self._in_dims_mappings
            ), "The length of dims_mapping {} does not matching the length output {}.".format(
                len(self._in_dims_mappings), len(args) + len(kwargs)
            )
296 297 298 299 300 301 302 303 304
        for arg in args:
            if isinstance(arg, Variable) and self._in_dims_mappings:
                tensor_to_dims_mapping[arg.name] = self._in_dims_mappings[index]
            index += 1
        for arg in kwargs.values() and self._in_dims_mappings:
            if isinstance(arg, Variable):
                tensor_to_dims_mapping[arg.name] = self._in_dims_mappings[index]
            index += 1

305 306 307
        default_prog = paddle.fluid.default_main_program()
        cur_block = default_prog.current_block()
        op_size = len(cur_block.ops)
308
        output = self._serial_op(*args, **kwargs)
309
        new_op_size = len(cur_block.ops)
310 311 312 313 314 315 316 317 318

        if isinstance(output, tuple) or isinstance(output, list):
            new_output = list(output)
        elif isinstance(output, Variable):
            new_output = [output]
        else:
            raise ValueError("Unrecognized outpout.")

        if self._out_dims_mappings:
319 320 321 322 323
            assert len(new_output) == len(
                self._out_dims_mappings
            ), "The length of dims_mapping {} does not matching the length output {}.".format(
                len(self._out_dims_mappings), len(new_output)
            )
324 325 326 327 328
        for i, item in enumerate(new_output):
            if isinstance(item, Variable) and self._out_dims_mappings:
                tensor_to_dims_mapping[item.name] = self._out_dims_mappings[i]

        from .dist_context import get_default_distributed_context
329

330 331
        default_dist_ctx = get_default_distributed_context()
        for idx in range(op_size, new_op_size):
332
            op = cur_block.ops[idx]
333 334 335 336 337
            dist_op = DistributedOperator(op)
            for name in dist_op.serial_op.input_arg_names:
                if name in tensor_to_dims_mapping.keys():
                    tensor = dist_op.get_serial_input(name)
                    tensor_dist_attr = dist_op.dist_attr.get_input_dist_attr(
338 339
                        name
                    )
340 341 342 343
                    dims_mapping = tensor_to_dims_mapping[name]
                    if tensor is None:
                        tensor_shape = []
                    else:
344 345 346 347 348 349
                        if (
                            tensor.type == core.VarDesc.VarType.READER
                            or tensor.type
                            == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                            or tensor.type == core.VarDesc.VarType.STEP_SCOPES
                        ):
350 351 352 353 354 355
                            tensor_shape = []
                        else:
                            tensor_shape = tensor.shape
                    if dims_mapping is not None:
                        dims_mapping = tensor_to_dims_mapping[name]
                        shard_spec = convert_to_shard_spec(
356 357 358 359 360 361 362
                            dims_mapping, self._process_mesh
                        )
                        assert verify_shard_spec(
                            shard_spec, tensor_shape, self._process_mesh
                        ), "For tensor {}, shard_spec {} is invalid with tensor_shape {} and process_mesh {}.".format(
                            name, shard_spec, tensor_shape, self._process_mesh
                        )
363 364 365 366 367 368
                        tensor_dist_attr.dims_mapping = dims_mapping
                        tensor_dist_attr.mark_annotated("dims_mapping")
            for name in dist_op.serial_op.output_arg_names:
                if name in tensor_to_dims_mapping.keys():
                    tensor = dist_op.get_serial_output(name)
                    tensor_dist_attr = dist_op.dist_attr.get_output_dist_attr(
369 370
                        name
                    )
371 372 373 374
                    dims_mapping = tensor_to_dims_mapping[name]
                    if tensor is None:
                        tensor_shape = []
                    else:
375 376 377 378 379 380
                        if (
                            tensor.type == core.VarDesc.VarType.READER
                            or tensor.type
                            == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                            or tensor.type == core.VarDesc.VarType.STEP_SCOPES
                        ):
381 382 383 384 385 386
                            tensor_shape = []
                        else:
                            tensor_shape = tensor.shape
                    if dims_mapping is not None:
                        dims_mapping = tensor_to_dims_mapping[name]
                        shard_spec = convert_to_shard_spec(
387 388 389 390 391 392 393
                            dims_mapping, self._process_mesh
                        )
                        assert verify_shard_spec(
                            shard_spec, tensor_shape, self._process_mesh
                        ), "For tensor {}, shard_spec {} is invalid with tensor_shape {} and process_mesh {}.".format(
                            name, shard_spec, tensor_shape, self._process_mesh
                        )
394 395 396 397 398
                        tensor_dist_attr.dims_mapping = dims_mapping
                        tensor_dist_attr.mark_annotated("dims_mapping")
            dist_op.dist_attr.process_mesh = self._process_mesh
            if self._process_mesh is not None:
                dist_op.dist_attr.mark_annotated("process_mesh")
399
            default_dist_ctx.add_dist_op_for_program(dist_op)
400
            default_dist_ctx.add_process_mesh(self._process_mesh)
401

Z
zhaoyingli 已提交
402
        return output