dist_op.py 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
import paddle
from paddle.fluid import core
from paddle.fluid.framework import Variable
from .dist_attribute import TensorDistributedAttribute
from .dist_attribute import OperatorDistributedAttribute
from .dist_attribute import append_op_input_suffix
from .dist_attribute import append_op_output_suffix
from .dist_attribute import get_tensor_dist_attr_field_keys
from .dist_attribute import get_op_dist_attr_field_keys


class DistributedOperator:
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
    def __init__(self, serial_op, dist_attr=None):
        self._serial_op = serial_op
        self._serial_inputs = {}
        self._serial_outputs = {}
        self._dist_attr = None
        # Reuse the dist_attr setter to initialize _dist_attr
        self.dist_attr = dist_attr

    @property
    def serial_op(self):
        return self._serial_op

    @property
    def dist_attr(self):
        return self._dist_attr

    @dist_attr.setter
    def dist_attr(self, dist_attr):
        if self._dist_attr is None:
            self._dist_attr = OperatorDistributedAttribute()
        # Create new dist_attr related to current serial_op
        dist_attr = self._filter_dist_attr(dist_attr)
        # Append suffix to mark the inputs or outputs
        if isinstance(dist_attr, dict):
            # Copy the keys since we may add new ones
            for key in list(dist_attr.keys()):
                if isinstance(key, Variable):
                    if key.name in self._serial_op.input_arg_names:
                        dist_attr[append_op_input_suffix(key.name)] = True
                    if key.name in self._serial_op.output_arg_names:
                        dist_attr[append_op_output_suffix(key.name)] = True
        self._dist_attr.init(dist_attr)
        self._init_default_dist_attr()

    def get_serial_input(self, name):
        return self._serial_inputs.get(name, None)

    def get_serial_output(self, name):
        return self._serial_outputs.get(name, None)

    def _init_default_dist_attr(self):
        for tensor_name in self._serial_op.input_arg_names:
            if self._serial_op.type == "create_py_reader":
                tensor = None
            else:
                tensor = self._serial_op.block._var_recursive(tensor_name)
            self._serial_inputs[tensor_name] = tensor
            if tensor is None:
                tensor_shape = []
            else:
80 81
                if tensor.type == core.VarDesc.VarType.READER \
                    or tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
82 83 84 85 86 87 88 89 90
                    tensor_shape = []
                else:
                    tensor_shape = tensor.shape
            if self._dist_attr.get_input_dims_mapping(tensor_name) is None:
                tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))]
                self._dist_attr.set_input_dims_mapping(tensor_name,
                                                       tensor_dims_mapping)
        for tensor_name in self._serial_op.output_arg_names:
            tensor = self._serial_op.block._var_recursive(tensor_name)
91 92 93
            if tensor.type == core.VarDesc.VarType.READER \
                or tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or tensor.type == core.VarDesc.VarType.STEP_SCOPES:
94 95 96 97 98 99 100 101
                tensor_shape = []
            else:
                tensor_shape = tensor.shape
            self._serial_outputs[tensor_name] = tensor
            if self._dist_attr.get_output_dims_mapping(tensor_name) is None:
                tensor_dims_mapping = [-1 for _ in range(len(tensor_shape))]
                self._dist_attr.set_output_dims_mapping(tensor_name,
                                                        tensor_dims_mapping)
102 103
        if self._dist_attr.op_type is None:
            self._dist_attr.op_type = self.serial_op.type
104 105 106
        if self._dist_attr.impl_type is None:
            self._dist_attr.impl_type = "default"
        if self._dist_attr.impl_idx is None:
107
            self._dist_attr.impl_idx = 0
108 109
        if self._dist_attr.is_recompute is None:
            self._dist_attr.is_recompute = False
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

    def _filter_dist_attr(self, dist_attr):
        if dist_attr is None:
            return None
        new_dist_attr = None
        if isinstance(dist_attr, dict):
            new_dist_attr = {}
            for key, value in dist_attr.items():
                if isinstance(key, Variable):
                    if key.name in self._serial_op.input_arg_names \
                        or key.name in self._serial_op.output_arg_names:
                        new_dist_attr[key] = value
                else:
                    new_dist_attr[key] = value
        elif isinstance(dist_attr, OperatorDistributedAttribute):
            new_dist_attr = copy.deepcopy(dist_attr)
            new_dist_attr._inputs_dist_attrs.clear()
            new_dist_attr._outputs_dist_attrs.clear()
            for tensor_name in self._serial_op.input_arg_names:
                tensor_dist_attr = dist_attr.get_input_dist_attr(tensor_name)
                if tensor_dist_attr:
                    new_dist_attr.set_input_dist_attr(tensor_name,
                                                      tensor_dist_attr)
            for tensor_name in self._serial_op.output_arg_names:
                tensor_dist_attr = dist_attr.get_output_dist_attr(tensor_name)
                if tensor_dist_attr:
                    new_dist_attr.set_output_dist_attr(tensor_name,
                                                       tensor_dist_attr)
        else:
            assert False, "Cannot recognize the {} parameter.".format(dist_attr)
        return new_dist_attr

    def validate_dist_attr(self):
143
        if "read" in self.serial_op.type or "while" == self.serial_op.type:
144 145 146 147
            return True
        for name in self.serial_op.input_arg_names:
            input_dist_attr = self.dist_attr.get_input_dist_attr(name)
            dims_mapping = input_dist_attr.dims_mapping
148 149 150 151 152
            if self.get_serial_input(
                    name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
                shape = []
            else:
                shape = self.get_serial_input(name).shape
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
            if len(shape) != len(dims_mapping):
                return False
            for i in range(len(dims_mapping)):
                if dims_mapping[i] < -1 or dims_mapping[i] >= len(
                        self.dist_attr.process_mesh.topology):
                    return False
            for i in range(len(self.dist_attr.process_mesh.topology)):
                if dims_mapping.count(i) > 1:
                    return False
            if self.dist_attr.process_mesh != input_dist_attr.process_mesh:
                return False

        for name in self.serial_op.output_arg_names:
            output_dist_attr = self.dist_attr.get_output_dist_attr(name)
            dims_mapping = output_dist_attr.dims_mapping
168 169 170 171 172
            if self.get_serial_output(name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY\
                or self.get_serial_output(name).type == core.VarDesc.VarType.STEP_SCOPES:
                shape = []
            else:
                shape = self.get_serial_output(name).shape
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            if len(shape) != len(dims_mapping):
                return False
            for i in range(len(dims_mapping)):
                if dims_mapping[i] < -1 or dims_mapping[i] >= len(
                        self.dist_attr.process_mesh.topology):
                    return False
            for i in range(len(self.dist_attr.process_mesh.topology)):
                if dims_mapping.count(i) > 1:
                    return False
            if self.dist_attr.process_mesh != output_dist_attr.process_mesh:
                return False
        return True

    def __str__(self):
        str = "{{op type: {}, op id: {}".format(self.serial_op.desc.type(),
                                                self.serial_op.desc.id())

        # str += ", {}".format(self.dist_attr)
        # return str

        if self.dist_attr.is_annotated("process_mesh"):
            annotated_str = "annotated"
        else:
            annotated_str = "non-annotated"
        str += ", process_mesh ({}): {}".format(annotated_str,
                                                self.dist_attr.process_mesh)

        for arg_name in self.serial_op.desc.input_arg_names():
            dims_mapping = self.dist_attr.get_input_dims_mapping(arg_name)
            if self.dist_attr.is_annotated_input_dims_mapping(arg_name):
                annotated_str = "annotated"
            else:
                annotated_str = "non-annotated"
            if self.get_serial_input(arg_name) is not None:
                if self.get_serial_input(arg_name).is_parameter:
                    is_parameter_str = "parameter"
                else:
                    is_parameter_str = "non-parameter"
            else:
                is_parameter_str = "non-parameter"
            str += ", {}'s dims_mapping (input, {}, {}): {}".format(
                arg_name, annotated_str, is_parameter_str, dims_mapping)

        for arg_name in self.serial_op.desc.output_arg_names():
            dims_mapping = self.dist_attr.get_output_dims_mapping(arg_name)
            if self.dist_attr.is_annotated_output_dims_mapping(arg_name):
                annotated_str = "annotated"
            else:
                annotated_str = "non-annotated"
            if self.get_serial_output(arg_name) is not None:
                if self.get_serial_output(arg_name).is_parameter:
                    is_parameter_str = "parameter"
                else:
                    is_parameter_str = "non-parameter"
            else:
                is_parameter_str = "non-parameter"
            str += ", {}'s dims_mapping (output, {}, {}): {}".format(
                arg_name, annotated_str, is_parameter_str, dims_mapping)

        str += ", pipeline stage: {}".format(None)

234 235
        str += ", dist_impl idx: {} , dist_impl type {} }}".format(
            self.dist_attr._impl_idx, self.dist_attr._impl_type)
236 237 238

        return str

Z
zhaoyingli 已提交
239 240 241 242 243 244 245 246 247 248 249
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
            if k == "_serial_op" or k == "_serial_inputs" or k == "_serial_outputs":
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

250 251

class DistributedModule:
252

253 254 255 256 257 258
    def __init__(self, serial_module, dist_attr=None):
        self._serial_module = serial_module
        self._dist_attr = dist_attr

    def __call__(self, *args, **kwargs):
        from .dist_context import get_default_distributed_context
259 260 261
        default_prog = paddle.fluid.default_main_program()
        cur_block = default_prog.current_block()
        op_size = len(cur_block.ops)
262
        output = self._serial_module(*args, **kwargs)
263
        new_op_size = len(cur_block.ops)
264 265
        default_dist_ctx = get_default_distributed_context()
        for idx in range(op_size, new_op_size):
266
            op = cur_block.ops[idx]
267 268 269
            dist_op = DistributedOperator(op, self._dist_attr)
            dist_op.dist_attr.mark_annotated_as(self._dist_attr)
            default_dist_ctx.add_dist_op_for_program(dist_op)
Z
zhaoyingli 已提交
270
        return output