test_maxout_op.py 5.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaox 已提交
17 18
import unittest
import numpy as np
19
import paddle
20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
22
import paddle.nn.functional as F
23
from op_test import OpTest
24
from paddle.fluid.framework import _test_eager_guard
W
wanghaox 已提交
25

26 27
paddle.enable_static()
np.random.seed(1)
W
wanghaox 已提交
28

29 30 31 32 33 34 35 36

def maxout_forward_naive(x, groups, channel_axis):
    s0, s1, s2, s3 = x.shape
    if channel_axis == 1:
        return np.ndarray([s0, s1 // groups, groups, s2, s3], \
            buffer = x, dtype=x.dtype).max(axis=2)
    return np.ndarray([s0, s1, s2, s3 // groups, groups], \
        buffer = x, dtype=x.dtype).max(axis=4)
W
wanghaox 已提交
37 38 39 40 41


class TestMaxOutOp(OpTest):
    def setUp(self):
        self.op_type = "maxout"
42
        self.python_api = paddle.nn.functional.maxout
43 44 45 46 47 48 49 50
        self.dtype = 'float64'
        self.shape = [3, 6, 2, 4]
        self.groups = 2
        self.axis = 1
        self.set_attrs()

        x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out = maxout_forward_naive(x, self.groups, self.axis)
W
wanghaox 已提交
51

52
        self.inputs = {'X': x}
53
        self.attrs = {'groups': self.groups, 'axis': self.axis}
54
        self.outputs = {'Out': out}
W
wanghaox 已提交
55

56 57
    def set_attrs(self):
        pass
W
wanghaox 已提交
58 59

    def test_check_output(self):
60
        self.check_output(check_eager=True)
W
wanghaox 已提交
61 62

    def test_check_grad(self):
63
        self.check_grad(['X'], 'Out', check_eager=True)
W
wanghaox 已提交
64

65

66 67 68
class TestMaxOutOpAxis0(TestMaxOutOp):
    def set_attrs(self):
        self.axis = -1
69 70


71 72 73
class TestMaxOutOpAxis1(TestMaxOutOp):
    def set_attrs(self):
        self.axis = 3
74 75


76 77 78
class TestMaxOutOpFP32(TestMaxOutOp):
    def set_attrs(self):
        self.dtype = 'float32'
79 80


81 82 83
class TestMaxOutOpGroups(TestMaxOutOp):
    def set_attrs(self):
        self.groups = 3
84

W
wanghaox 已提交
85

86 87 88 89 90 91 92 93 94 95 96
class TestMaxoutAPI(unittest.TestCase):
    # test paddle.nn.Maxout, paddle.nn.functional.maxout
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [2, 6, 5, 4]).astype(np.float64)
        self.groups = 2
        self.axis = 1
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
97
            x = paddle.fluid.data('X', self.x_np.shape, self.x_np.dtype)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
            out1 = F.maxout(x, self.groups, self.axis)
            m = paddle.nn.Maxout(self.groups, self.axis)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.maxout(x, self.groups, self.axis)
        m = paddle.nn.Maxout(self.groups, self.axis)
        out2 = m(x)
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))

        out3 = F.maxout(x, self.groups, -1)
        out3_ref = maxout_forward_naive(self.x_np, self.groups, -1)
        self.assertTrue(np.allclose(out3_ref, out3.numpy()))
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.maxout(x, groups=self.groups, axis=self.axis)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.maxout(x, groups=self.groups, axis=self.axis)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()
W
wanghaox 已提交
136

137
    def test_errors(self):
138
        with paddle.static.program_guard(paddle.static.Program()):
139
            # The input type must be Variable.
140
            self.assertRaises(TypeError, F.maxout, 1)
141
            # The input dtype must be float16, float32, float64.
142
            x_int32 = paddle.fluid.data(
143 144 145
                name='x_int32', shape=[2, 4, 6, 8], dtype='int32')
            self.assertRaises(TypeError, F.maxout, x_int32)

146
            x_float32 = paddle.fluid.data(name='x_float32', shape=[2, 4, 6, 8])
147
            self.assertRaises(ValueError, F.maxout, x_float32, 2, 2)
148

149 150 151 152
    def test_dygraph_final_state_api(self):
        with _test_eager_guard():
            self.test_dygraph_api()

153

W
wanghaox 已提交
154 155
if __name__ == '__main__':
    unittest.main()