test_maxout_op.py 5.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaox 已提交
17 18
import unittest
import numpy as np
19
import paddle
20 21
import paddle.fluid as fluid
import paddle.fluid.core as core
22
import paddle.nn.functional as F
23
from op_test import OpTest
W
wanghaox 已提交
24

25 26
paddle.enable_static()
np.random.seed(1)
W
wanghaox 已提交
27

28 29 30 31 32 33 34 35

def maxout_forward_naive(x, groups, channel_axis):
    s0, s1, s2, s3 = x.shape
    if channel_axis == 1:
        return np.ndarray([s0, s1 // groups, groups, s2, s3], \
            buffer = x, dtype=x.dtype).max(axis=2)
    return np.ndarray([s0, s1, s2, s3 // groups, groups], \
        buffer = x, dtype=x.dtype).max(axis=4)
W
wanghaox 已提交
36 37 38 39 40


class TestMaxOutOp(OpTest):
    def setUp(self):
        self.op_type = "maxout"
41 42 43 44 45 46 47 48
        self.dtype = 'float64'
        self.shape = [3, 6, 2, 4]
        self.groups = 2
        self.axis = 1
        self.set_attrs()

        x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out = maxout_forward_naive(x, self.groups, self.axis)
W
wanghaox 已提交
49

50
        self.inputs = {'X': x}
51
        self.attrs = {'groups': self.groups, 'axis': self.axis}
52
        self.outputs = {'Out': out}
W
wanghaox 已提交
53

54 55
    def set_attrs(self):
        pass
W
wanghaox 已提交
56 57 58 59 60 61 62

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

63

64 65 66
class TestMaxOutOpAxis0(TestMaxOutOp):
    def set_attrs(self):
        self.axis = -1
67 68


69 70 71
class TestMaxOutOpAxis1(TestMaxOutOp):
    def set_attrs(self):
        self.axis = 3
72 73


74 75 76
class TestMaxOutOpFP32(TestMaxOutOp):
    def set_attrs(self):
        self.dtype = 'float32'
77 78


79 80 81
class TestMaxOutOpGroups(TestMaxOutOp):
    def set_attrs(self):
        self.groups = 3
82

W
wanghaox 已提交
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
class TestMaxoutAPI(unittest.TestCase):
    # test paddle.nn.Maxout, paddle.nn.functional.maxout
    def setUp(self):
        self.x_np = np.random.uniform(-1, 1, [2, 6, 5, 4]).astype(np.float64)
        self.groups = 2
        self.axis = 1
        self.place=paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_static_api(self):
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.data('X', self.x_np.shape, self.x_np.dtype)
            out1 = F.maxout(x, self.groups, self.axis)
            m = paddle.nn.Maxout(self.groups, self.axis)
            out2 = m(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in res:
            self.assertTrue(np.allclose(out_ref, r))

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out1 = F.maxout(x, self.groups, self.axis)
        m = paddle.nn.Maxout(self.groups, self.axis)
        out2 = m(x)
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        for r in [out1, out2]:
            self.assertTrue(np.allclose(out_ref, r.numpy()))

        out3 = F.maxout(x, self.groups, -1)
        out3_ref = maxout_forward_naive(self.x_np, self.groups, -1)
        self.assertTrue(np.allclose(out3_ref, out3.numpy()))
        paddle.enable_static()

    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data('X', self.x_np.shape, self.x_np.dtype)
            out = fluid.layers.maxout(x, groups=self.groups, axis=self.axis)
            exe = fluid.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        out_ref = maxout_forward_naive(self.x_np, self.groups, self.axis)
        self.assertTrue(np.allclose(out_ref, res[0]))

        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        out = paddle.fluid.layers.maxout(x, groups=self.groups, axis=self.axis)
        self.assertTrue(np.allclose(out_ref, out.numpy()))
        paddle.enable_static()
W
wanghaox 已提交
134

135
    def test_errors(self):
136
        with paddle.static.program_guard(paddle.static.Program()):
137
            # The input type must be Variable.
138
            self.assertRaises(TypeError, F.maxout, 1)
139
            # The input dtype must be float16, float32, float64.
140 141 142 143 144 145
            x_int32 = paddle.data(
                name='x_int32', shape=[2, 4, 6, 8], dtype='int32')
            self.assertRaises(TypeError, F.maxout, x_int32)

            x_float32 = paddle.data(name='x_float32', shape=[2, 4, 6, 8])
            self.assertRaises(ValueError, F.maxout, x_float32, 2, 2)
146 147


W
wanghaox 已提交
148 149
if __name__ == '__main__':
    unittest.main()