test_activation_nn_grad.py 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle.fluid as fluid
21
import paddle
22 23 24
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
25
import paddle.nn.functional as F
26
from paddle.fluid.framework import _test_eager_guard
27 28 29 30

from decorator_helper import prog_scope


31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
class TestSigmoidTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = layers.sigmoid(x)
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
46
        paddle.enable_static()
47 48 49 50 51 52 53
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


54
class TestSigmoidDoubleGradCheck(unittest.TestCase):
55 56 57
    def sigmoid_wrapper(self, x):
        return fluid.layers.sigmoid(x[0])

58 59 60 61 62 63 64 65 66 67 68 69
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = layers.sigmoid(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
70
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
71 72
        gradient_checker.double_grad_check_for_dygraph(
            self.sigmoid_wrapper, [x], y, x_init=x_arr, place=place)
73
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
74 75

    def test_grad(self):
76
        paddle.enable_static()
77 78 79 80 81 82 83
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


84
class TestTanhTripleGradCheck(unittest.TestCase):
85 86 87
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

88 89 90 91 92 93 94 95 96 97 98 99
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = layers.tanh(x)
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
100
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
101 102
        gradient_checker.triple_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place)
103
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
104 105

    def test_grad(self):
106
        paddle.enable_static()
107 108 109 110 111 112 113
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


114
class TestTanhDoubleGradCheck(unittest.TestCase):
115 116 117
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

118 119 120 121 122 123 124 125 126 127 128 129
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.tanh(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
130
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
131 132
        gradient_checker.double_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place)
133
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
134 135

    def test_grad(self):
136
        paddle.enable_static()
137 138 139 140 141 142 143
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
class TestAbsDoubleGradCheck(unittest.TestCase):
    def abs_wrapper(self, x):
        return paddle.abs(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
        x = layers.data('x', shape, False, dtype=dtype)
        x.persistable = True
        y = paddle.abs(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
160
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
161 162
        gradient_checker.double_grad_check_for_dygraph(
            self.abs_wrapper, [x], y, x_init=x_arr, place=place)
163
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
164 165 166 167 168 169 170 171 172 173

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
class TestReluDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.relu(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
191
        paddle.enable_static()
192 193 194 195 196 197 198 199
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestLeakyReluDoubleGradCheck(unittest.TestCase):
200 201 202
    def leaky_relu_wrapper(self, x):
        return paddle.nn.functional.leaky_relu(x[0], negative_slope=0.2)

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        alpha = 0.2
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.leaky_relu(x, alpha=alpha)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
219 220
        gradient_checker.double_grad_check_for_dygraph(
            self.leaky_relu_wrapper, [x], y, x_init=x_arr, place=place)
221 222

    def test_grad(self):
223
        paddle.enable_static()
224 225 226 227 228 229 230
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


D
Double_V 已提交
231
class TestELUDoubleGradCheck(unittest.TestCase):
232 233 234
    def elu_wrapper(self, x):
        return paddle.nn.functional.elu(x[0], alpha=0.2)

D
Double_V 已提交
235 236
    @prog_scope()
    def func(self, place):
237
        shape = [2, 4, 4, 4]
D
Double_V 已提交
238
        eps = 1e-6
239
        alpha = 0.2
D
Double_V 已提交
240
        dtype = np.float64
241
        SEED = 0
D
Double_V 已提交
242 243 244 245 246

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.elu(x, alpha=alpha)
247
        np.random.RandomState(SEED)
D
Double_V 已提交
248 249 250
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
251
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
252 253
        gradient_checker.double_grad_check_for_dygraph(
            self.elu_wrapper, [x], y, x_init=x_arr, place=place)
254
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
D
Double_V 已提交
255 256

    def test_grad(self):
257
        paddle.enable_static()
D
Double_V 已提交
258 259 260 261 262 263 264
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


265
class TestCELUDoubleGradCheck(unittest.TestCase):
266 267 268
    def celu_wrapper(self, x):
        return paddle.nn.functional.celu(x[0], alpha=0.2)

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 4, 4]
        eps = 1e-6
        alpha = 0.2
        dtype = np.float64
        SEED = 0

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = F.celu(x, alpha=alpha)
        np.random.RandomState(SEED)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
285
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
286 287
        gradient_checker.double_grad_check_for_dygraph(
            self.celu_wrapper, [x], y, x_init=x_arr, place=place)
288
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
289 290

    def test_grad(self):
291
        paddle.enable_static()
292 293 294 295 296 297 298
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


299
class TestSqrtDoubleGradCheck(unittest.TestCase):
300 301 302
    def sqrt_wrapper(self, x):
        return paddle.sqrt(x[0])

303 304 305 306 307 308 309 310 311 312 313 314 315 316
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.sqrt(x)
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
317 318
        gradient_checker.double_grad_check_for_dygraph(
            self.sqrt_wrapper, [x], y, x_init=x_arr, place=place)
319 320

    def test_grad(self):
321
        paddle.enable_static()
322 323 324 325 326 327 328
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


W
whs 已提交
329
class TestRsqrtDoubleGradCheck(unittest.TestCase):
330 331 332
    def rsqrt_wrapper(self, x):
        return paddle.rsqrt(x[0])

W
whs 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True

        y = layers.rsqrt(x)
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
347 348
        gradient_checker.double_grad_check_for_dygraph(
            self.rsqrt_wrapper, [x], y, x_init=x_arr, place=place)
W
whs 已提交
349 350

    def test_grad(self):
351
        paddle.enable_static()
W
whs 已提交
352 353 354 355 356 357 358
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


359
class TestSquareDoubleGradCheck(unittest.TestCase):
360 361 362
    def square_wrapper(self, x):
        return paddle.square(x[0])

363 364
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
365
        # the shape of input variable should be clearly specified, not inlcude -1.
366 367 368 369 370 371 372 373 374 375 376
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.square(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
377
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
378 379
        gradient_checker.double_grad_check_for_dygraph(
            self.square_wrapper, [x], y, x_init=x_arr, place=place)
380
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
381 382

    def test_grad(self):
383
        paddle.enable_static()
384 385 386 387 388 389 390
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Z
Zhong Hui 已提交
391 392 393 394 395 396 397 398 399 400 401 402
class TestAbsDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.abs(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
Z
Zhong Hui 已提交
403 404 405 406
        # Because we set delta = 0.005 in calculating numeric gradient,
        # if x is too small, the numeric gradient is inaccurate.
        # we should avoid this
        x_arr[np.abs(x_arr) < 0.005] = 0.02
Z
Zhong Hui 已提交
407 408 409 410 411

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
412
        paddle.enable_static()
Z
Zhong Hui 已提交
413 414 415 416 417 418 419
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


420
class TestLogDoubleGradCheck(unittest.TestCase):
421 422 423
    def log_wrapper(self, x):
        return paddle.log(x[0])

424 425 426 427 428 429 430 431 432 433 434 435 436 437
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.log(x)

        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)
438
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
439 440
        gradient_checker.double_grad_check_for_dygraph(
            self.log_wrapper, [x], y, x_init=x_arr, place=place)
441
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
442 443

    def test_grad(self):
444
        paddle.enable_static()
445 446 447 448 449 450 451
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


452 453
if __name__ == "__main__":
    unittest.main()