transform.py 43.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import enum
import math
import typing

import paddle
import paddle.nn.functional as F
21 22 23 24 25 26
from paddle.distribution import (
    constraint,
    distribution,
    transformed_distribution,
    variable,
)
27 28

__all__ = [  # noqa
29 30 31 32 33 34 35 36 37 38 39 40 41
    'Transform',
    'AbsTransform',
    'AffineTransform',
    'ChainTransform',
    'ExpTransform',
    'IndependentTransform',
    'PowerTransform',
    'ReshapeTransform',
    'SigmoidTransform',
    'SoftmaxTransform',
    'StackTransform',
    'StickBreakingTransform',
    'TanhTransform',
42 43 44 45
]


class Type(enum.Enum):
46 47
    """Mapping type of a transformation."""

48 49 50 51 52 53 54
    BIJECTION = 'bijection'  # bijective(injective and surjective)
    INJECTION = 'injection'  # injective-only
    SURJECTION = 'surjection'  # surjective-only
    OTHER = 'other'  # general, neither injective nor surjective

    @classmethod
    def is_injective(cls, _type):
55
        """Both bijection and injection are injective mapping."""
56 57 58
        return _type in (cls.BIJECTION, cls.INJECTION)


59
class Transform:
60 61
    r"""Base class for the transformations of random variables.

62 63 64 65 66 67 68
    ``Transform`` can be used to represent any differentiable and injective
    function from the subset of :math:`R^n` to subset of :math:`R^m`, generally
    used for transforming a random sample generated by ``Distribution``
    instance.

    Suppose :math:`X` is a K-dimensional random variable with probability
    density function :math:`p_X(x)`. A new random variable :math:`Y = f(X)` may
C
co63oc 已提交
69
    be defined by transforming :math:`X` with a suitably well-behaved function
70
    :math:`f`. It suffices for what follows to note that if `f` is one-to-one and
71
    its inverse :math:`f^{-1}` have a well-defined Jacobian, then the density of
72 73 74 75 76 77
    :math:`Y` is

    .. math::

        p_Y(y) = p_X(f^{-1}(y)) |det J_{f^{-1}}(y)|

78
    where det is the matrix determinant operation and :math:`J_{f^{-1}}(y)` is
79 80 81 82 83 84
    the Jacobian matrix of :math:`f^{-1}` evaluated at :math:`y`.
    Taking :math:`x = f^{-1}(y)`, the Jacobian matrix is defined by

    .. math::

        J(y) = \begin{bmatrix}
85
        {\frac{\partial x_1}{\partial y_1}} &{\frac{\partial x_1}{\partial y_2}}
86 87 88 89
        &{\cdots} &{\frac{\partial x_1}{\partial y_K}} \\
        {\frac{\partial x_2}{\partial y_1}}  &{\frac{\partial x_2}
        {\partial y_2}}&{\cdots} &{\frac{\partial x_2}{\partial y_K}} \\
        {\vdots} &{\vdots} &{\ddots} &{\vdots}\\
90 91
        {\frac{\partial x_K}{\partial y_1}} &{\frac{\partial x_K}{\partial y_2}}
        &{\cdots} &{\frac{\partial x_K}{\partial y_K}}
92 93 94 95 96
        \end{bmatrix}

    A ``Transform`` can be characterized by three operations:

        #. forward
97
           Forward implements :math:`x \rightarrow f(x)`, and is used to convert
98 99
           one random outcome into another.
        #. inverse
100
           Undoes the transformation :math:`y \rightarrow f^{-1}(y)`.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        #. log_det_jacobian
           The log of the absolute value of the determinant of the matrix of all
           first-order partial derivatives of the inverse function.

    Subclass typically implement follow methods:

        * _forward
        * _inverse
        * _forward_log_det_jacobian
        * _inverse_log_det_jacobian (optional)

    If the transform changes the shape of the input, you must also implemented:

        * _forward_shape
        * _inverse_shape
116

117 118 119 120
    """
    _type = Type.INJECTION

    def __init__(self):
121
        super().__init__()
122 123 124 125 126 127 128 129 130 131 132

    @classmethod
    def _is_injective(cls):
        """Is the transformation type one-to-one or not.

        Returns:
            bool: ``True`` denotes injective. ``False`` denotes non-injective.
        """
        return Type.is_injective(cls._type)

    def __call__(self, input):
133 134
        """Make this instance as a callable object. The return value is
        depening on the input type.
135

136
        * If the input is a ``Tensor`` instance, return
137
          ``self.forward(input)`` .
138
        * If the input is a ``Distribution`` instance, return
139
          ``TransformedDistribution(base=input, transforms=[self])`` .
140
        * If the input is a ``Transform`` instance, return
141 142 143 144 145 146 147 148 149
          ``ChainTransform([self, input])`` .

        Args:
            input (Tensor|Distribution|Transform): The input value.

        Returns:
            [Tensor|TransformedDistribution|ChainTransform]: The return value.
        """
        if isinstance(input, distribution.Distribution):
150
            return transformed_distribution.TransformedDistribution(
151 152
                input, [self]
            )
153 154
        if isinstance(input, Transform):
            return ChainTransform([self, input])
155
        return self.forward(input)
156 157

    def forward(self, x):
158
        """Forward transformation with mapping :math:`y = f(x)`.
159 160 161 162

        Useful for turning one random outcome into another.

        Args:
163
            x (Tensos): Input parameter, generally is a sample generated
164 165 166 167 168 169 170
                from ``Distribution``.

        Returns:
            Tensor: Outcome of forward transformation.
        """
        if not isinstance(x, paddle.fluid.framework.Variable):
            raise TypeError(
171 172
                f"Expected 'x' is a Tensor or Real, but got {type(x)}."
            )
173 174 175
        if x.dim() < self._domain.event_rank:
            raise ValueError(
                f'The dimensions of x({x.dim()}) should be '
176 177
                f'grater than or equal to {self._domain.event_rank}'
            )
178 179 180
        return self._forward(x)

    def inverse(self, y):
181
        """Inverse transformation :math:`x = f^{-1}(y)`. It's useful for "reversing"
182 183 184 185 186 187 188 189 190 191
        a transformation to compute one probability in terms of another.

        Args:
            y (Tensor): Input parameter for inverse transformation.

        Returns:
            Tensor: Outcome of inverse transform.
        """
        if not isinstance(y, paddle.fluid.framework.Variable):
            raise TypeError(
192 193
                f"Expected 'y' is a Tensor or Real, but got {type(y)}."
            )
194 195 196
        if y.dim() < self._codomain.event_rank:
            raise ValueError(
                f'The dimensions of y({y.dim()}) should be '
197 198
                f'grater than or equal to {self._codomain.event_rank}'
            )
199 200 201
        return self._inverse(y)

    def forward_log_det_jacobian(self, x):
202
        """The log of the absolute value of the determinant of the matrix of all
203 204 205
        first-order partial derivatives of the inverse function.

        Args:
206
            x (Tensor): Input tensor, generally is a sample generated from
207 208 209
                ``Distribution``

        Returns:
210
            Tensor: The log of the absolute value of Jacobian determinant.
211 212 213
        """
        if not isinstance(x, paddle.fluid.framework.Variable):
            raise TypeError(
214 215 216 217 218 219
                f"Expected 'y' is a Tensor or Real, but got {type(x)}."
            )
        if (
            isinstance(x, paddle.fluid.framework.Variable)
            and x.dim() < self._domain.event_rank
        ):
220 221
            raise ValueError(
                f'The dimensions of x({x.dim()}) should be '
222 223
                f'grater than or equal to {self._domain.event_rank}'
            )
224 225 226
        if not self._is_injective():
            raise NotImplementedError(
                "forward_log_det_jacobian can't be implemented for non-injective"
227 228
                "transforms."
            )
229 230 231 232 233

        return self._call_forward_log_det_jacobian(x)

    def inverse_log_det_jacobian(self, y):
        """Compute :math:`log|det J_{f^{-1}}(y)|`.
234
        Note that ``forward_log_det_jacobian`` is the negative of this function,
235 236 237
        evaluated at :math:`f^{-1}(y)`.

        Args:
238
            y (Tensor): The input to the ``inverse`` Jacobian determinant
239 240 241 242 243 244 245 246 247 248
                evaluation.

        Returns:
            Tensor: The value of :math:`log|det J_{f^{-1}}(y)|`.
        """
        if not isinstance(y, paddle.fluid.framework.Variable):
            raise TypeError(f"Expected 'y' is a Tensor, but got {type(y)}.")
        if y.dim() < self._codomain.event_rank:
            raise ValueError(
                f'The dimensions of y({y.dim()}) should be '
249 250
                f'grater than or equal to {self._codomain.event_rank}'
            )
251 252 253 254 255 256 257 258 259 260 261 262 263
        return self._call_inverse_log_det_jacobian(y)

    def forward_shape(self, shape):
        """Infer the shape of forward transformation.

        Args:
            shape (Sequence[int]): The input shape.

        Returns:
            Sequence[int]: The output shape.
        """
        if not isinstance(shape, typing.Sequence):
            raise TypeError(
264 265
                f"Expected shape is Sequence[int] type, but got {type(shape)}."
            )
266 267 268 269 270 271 272 273 274 275 276 277 278
        return self._forward_shape(shape)

    def inverse_shape(self, shape):
        """Infer the shape of inverse transformation.

        Args:
            shape (Sequence[int]): The input shape of inverse transformation.

        Returns:
            Sequence[int]: The output shape of inverse transformation.
        """
        if not isinstance(shape, typing.Sequence):
            raise TypeError(
279 280
                f"Expected shape is Sequence[int] type, but got {type(shape)}."
            )
281 282 283 284 285 286 287 288 289 290 291 292 293
        return self._inverse_shape(shape)

    @property
    def _domain(self):
        """The domain of this transformation"""
        return variable.real

    @property
    def _codomain(self):
        """The codomain of this transformation"""
        return variable.real

    def _forward(self, x):
294
        """Inner method for publid API ``forward``, subclass should
295 296 297 298 299
        overwrite this method for supporting forward transformation.
        """
        raise NotImplementedError('Forward not implemented')

    def _inverse(self, y):
300
        """Inner method of public API ``inverse``, subclass should
301 302 303 304 305 306 307 308 309
        overwrite this method for supporting inverse transformation.
        """
        raise NotImplementedError('Inverse not implemented')

    def _call_forward_log_det_jacobian(self, x):
        """Inner method called by ``forward_log_det_jacobian``."""
        if hasattr(self, '_forward_log_det_jacobian'):
            return self._forward_log_det_jacobian(x)
        if hasattr(self, '_inverse_log_det_jacobian'):
310
            return -self._inverse_log_det_jacobian(self.forward(x))
311 312
        raise NotImplementedError(
            'Neither _forward_log_det_jacobian nor _inverse_log_det_jacobian'
313 314
            'is implemented. One of them is required.'
        )
315 316 317 318 319 320 321 322 323

    def _call_inverse_log_det_jacobian(self, y):
        """Inner method called by ``inverse_log_det_jacobian``"""
        if hasattr(self, '_inverse_log_det_jacobian'):
            return self._inverse_log_det_jacobian(y)
        if hasattr(self, '_forward_log_det_jacobian'):
            return -self._forward_log_det_jacobian(self._inverse(y))
        raise NotImplementedError(
            'Neither _forward_log_det_jacobian nor _inverse_log_det_jacobian '
324 325
            'is implemented. One of them is required'
        )
326 327

    def _forward_shape(self, shape):
328 329
        """Inner method called by ``forward_shape``, which is used to infer the
        forward shape. Subclass should overwrite this method for supporting
330 331 332 333 334
        ``forward_shape``.
        """
        return shape

    def _inverse_shape(self, shape):
335 336
        """Inner method called by ``inverse_shape``, whic is used to infer the
        invese shape. Subclass should overwrite this method for supporting
337 338 339 340 341 342
        ``inverse_shape``.
        """
        return shape


class AbsTransform(Transform):
343
    r"""Absolute transformation with formula :math:`y = f(x) = abs(x)`,
344 345
    element-wise.

346 347
    This non-injective transformation allows for transformations of scalar
    distributions with the absolute value function, which maps ``(-inf, inf)``
348 349
    to ``[0, inf)`` .

350
    * For ``y`` in ``(0, inf)`` , ``AbsTransform.inverse(y)`` returns the set invese
351
      ``{x  in (-inf, inf) : |x| = y}`` as a tuple, ``-y, y`` .
352 353 354
    * For ``y`` equal ``0`` , ``AbsTransform.inverse(0)`` returns ``0, 0``, which is not
      the set inverse (the set inverse is the singleton {0}), but "works" in
      conjunction with ``TransformedDistribution`` to produce a left
355
      semi-continuous pdf.
356
    * For ``y`` in ``(-inf, 0)`` , ``AbsTransform.inverse(y)`` returns the
357 358 359 360 361 362 363 364 365 366 367 368 369 370
      wrong thing ``-y, y``. This is done for efficiency.

    Examples:

        .. code-block:: python

            import paddle

            abs = paddle.distribution.AbsTransform()

            print(abs.forward(paddle.to_tensor([-1., 0., 1.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 0., 1.])

371
            print(abs.inverse(paddle.to_tensor([1.])))
372 373 374 375 376 377 378 379 380 381 382
            # (Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-1.]), Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.]))

            # The |dX/dY| is constant 1. So Log|dX/dY| == 0
            print(abs.inverse_log_det_jacobian(paddle.to_tensor(1.)))
            # (Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.), Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.))

            #Special case handling of 0.
383
            print(abs.inverse(paddle.to_tensor([0.])))
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
            # (Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.]), Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.]))
            print(abs.inverse_log_det_jacobian(paddle.to_tensor(0.)))
            # (Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.), Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.))

    """
    _type = Type.SURJECTION

    def _forward(self, x):
        return x.abs()

    def _inverse(self, y):
        return -y, y

    def _inverse_log_det_jacobian(self, y):
402
        zero = paddle.zeros([], dtype=y.dtype)
403 404 405 406 407 408 409 410 411 412 413 414
        return zero, zero

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.positive


class AffineTransform(Transform):
415
    r"""Affine transformation with mapping
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    :math:`y = \text{loc} + \text{scale} \times x`.

    Args:
        loc (Tensor): The location parameter.
        scale (Tensor): The scale parameter.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1., 2.])
            affine = paddle.distribution.AffineTransform(paddle.to_tensor(0.), paddle.to_tensor(1.))

            print(affine.forward(x))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 2.])
            print(affine.inverse(affine.forward(x)))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 2.])
            print(affine.forward_log_det_jacobian(x))
438 439
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.)
440 441 442 443 444 445 446 447
    """
    _type = Type.BIJECTION

    def __init__(self, loc, scale):
        if not isinstance(loc, paddle.fluid.framework.Variable):
            raise TypeError(f"Expected 'loc' is a Tensor, but got {type(loc)}")
        if not isinstance(scale, paddle.fluid.framework.Variable):
            raise TypeError(
448 449
                f"Expected scale is a Tensor, but got {type(scale)}"
            )
450 451
        self._loc = loc
        self._scale = scale
452
        super().__init__()
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

    @property
    def loc(self):
        return self._loc

    @property
    def scale(self):
        return self._scale

    def _forward(self, x):
        return self._loc + self._scale * x

    def _inverse(self, y):
        return (y - self._loc) / self._scale

    def _forward_log_det_jacobian(self, x):
        return paddle.abs(self._scale).log()

    def _forward_shape(self, shape):
        return tuple(
            paddle.broadcast_shape(
                paddle.broadcast_shape(shape, self._loc.shape),
475 476 477
                self._scale.shape,
            )
        )
478 479 480 481 482

    def _inverse_shape(self, shape):
        return tuple(
            paddle.broadcast_shape(
                paddle.broadcast_shape(shape, self._loc.shape),
483 484 485
                self._scale.shape,
            )
        )
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.real


class ChainTransform(Transform):
    r"""Composes multiple transforms in a chain.

    Args:
        transforms (Sequence[Transform]): A sequence of transformations.

    Examples:

        .. code-block:: python

            import paddle


            x = paddle.to_tensor([0., 1., 2., 3.])

            chain = paddle.distribution.ChainTransform((
                paddle.distribution.AffineTransform(
                    paddle.to_tensor(0.), paddle.to_tensor(1.)),
                paddle.distribution.ExpTransform()
            ))
            print(chain.forward(x))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.         , 2.71828175 , 7.38905621 , 20.08553696])
            print(chain.inverse(chain.forward(x)))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0., 1., 2., 3.])
            print(chain.forward_log_det_jacobian(x))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0., 1., 2., 3.])
            print(chain.inverse_log_det_jacobian(chain.forward(x)))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 0., -1., -2., -3.])
    """

    def __init__(self, transforms):
        if not isinstance(transforms, typing.Sequence):
            raise TypeError(
                f"Expected type of 'transforms' is Sequence, but got {type(transforms)}"
            )
        if not all(isinstance(t, Transform) for t in transforms):
            raise TypeError(
537 538
                "All elements of transforms should be Transform type."
            )
539 540

        self.transforms = transforms
541
        super().__init__()
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556

    def _is_injective(self):
        return all(t._is_injective() for t in self.transforms)

    def _forward(self, x):
        for transform in self.transforms:
            x = transform.forward(x)
        return x

    def _inverse(self, y):
        for transform in reversed(self.transforms):
            y = transform.inverse(y)
        return y

    def _forward_log_det_jacobian(self, x):
557
        value = 0.0
558 559
        event_rank = self._domain.event_rank
        for t in self.transforms:
560 561 562
            value += self._sum_rightmost(
                t.forward_log_det_jacobian(x), event_rank - t._domain.event_rank
            )
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
            x = t.forward(x)
            event_rank += t._codomain.event_rank - t._domain.event_rank
        return value

    def _forward_shape(self, shape):
        for transform in self.transforms:
            shape = transform.forward_shape(shape)
        return shape

    def _inverse_shape(self, shape):
        for transform in self.transforms:
            shape = transform.inverse_shape(shape)
        return shape

    def _sum_rightmost(self, value, n):
        """sum value along rightmost n dim"""
        return value.sum(list(range(-n, 0))) if n > 0 else value

    @property
    def _domain(self):
        domain = self.transforms[0]._domain

        # Compute the lower bound of input dimensions for chain transform.
        #
        # Suppose the dimensions of input tensor is N, and chain [t0,...ti,...tm],
        # ti(in) denotes ti.domain.event_rank, ti(out) denotes ti.codomain.event_rank,
        # delta(ti) denotes (ti(out) - ti(in)).
        # For transform ti, N shoud satisfy the constraint:
        #   N + delta(t0) + delta(t1)...delta(t(i-1)) >= ti(in)
        # So, for all transform in chain, N shoud satisfy follow constraints:
        #   t0: N >= t0(in)
        #   t1: N >= t1(in) - delta(t0)
        #   ...
        #   tm: N >= tm(in) - ... - delta(ti) - ... - delta(t0)
        #
        # Above problem can be solved more effectively use dynamic programming.
        # Let N(i) denotes lower bound of transform ti, than the state
        # transition equation is:
        #   N(i) = max{N(i+1)-delta(ti), ti(in)}
        event_rank = self.transforms[-1]._codomain.event_rank
        for t in reversed(self.transforms):
            event_rank -= t._codomain.event_rank - t._domain.event_rank
            event_rank = max(event_rank, t._domain.event_rank)

        return variable.Independent(domain, event_rank - domain.event_rank)

    @property
    def _codomain(self):
        codomain = self.transforms[-1]._codomain

        event_rank = self.transforms[0]._domain.event_rank
        for t in self.transforms:
            event_rank += t._codomain.event_rank - t._domain.event_rank
            event_rank = max(event_rank, t._codomain.event_rank)

        return variable.Independent(codomain, event_rank - codomain.event_rank)


class ExpTransform(Transform):
    r"""Exponent transformation with mapping :math:`y = \exp(x)`.

624
    Examples:
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

        .. code-block:: python

            import paddle

            exp = paddle.distribution.ExpTransform()
            print(exp.forward(paddle.to_tensor([1., 2., 3.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.71828175 , 7.38905621 , 20.08553696])

            print(exp.inverse(paddle.to_tensor([1., 2., 3.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.        , 0.69314718, 1.09861231])

            print(exp.forward_log_det_jacobian(paddle.to_tensor([1., 2., 3.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 2., 3.])

            print(exp.inverse_log_det_jacobian(paddle.to_tensor([1., 2., 3.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 0.        , -0.69314718, -1.09861231])
    """
    _type = Type.BIJECTION

    def __init__(self):
650
        super().__init__()
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.positive

    def _forward(self, x):
        return x.exp()

    def _inverse(self, y):
        return y.log()

    def _forward_log_det_jacobian(self, x):
        return x


class IndependentTransform(Transform):
    r"""
672
    ``IndependentTransform`` wraps a base transformation, reinterprets
673 674 675
    some of the rightmost batch axes as event axes.

    Generally, it is used to expand the event axes. This has no effect on the
676 677
    forward or inverse transformaion, but does sum out the
    ``reinterpretd_bach_rank`` rightmost dimensions in computing the determinant
678 679
    of Jacobian matrix.

680 681
    To see this, consider the ``ExpTransform`` applied to a Tensor which has
    sample, batch, and event ``(S,B,E)`` shape semantics. Suppose the Tensor's
682 683
    paritioned-shape is ``(S=[4], B=[2, 2], E=[3])`` , reinterpreted_batch_rank
    is 1. Then the reinterpreted Tensor's shape  is ``(S=[4], B=[2], E=[2, 3])`` .
684 685 686
    The shape returned by ``forward`` and ``inverse`` is unchanged, ie,
    ``[4,2,2,3]`` . However the shape returned by ``inverse_log_det_jacobian``
    is ``[4,2]``, because the Jacobian determinant is a reduction over the
687 688 689 690
    event dimensions.

    Args:
        base (Transform): The base transformation.
691
        reinterpreted_batch_rank (int): The num of rightmost batch rank that
692
            will be reinterpreted as event rank.
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 2., 3.], [4., 5., 6.]])

            # Exponential transform with event_rank = 1
            multi_exp = paddle.distribution.IndependentTransform(
                paddle.distribution.ExpTransform(), 1)
            print(multi_exp.forward(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2.71828175  , 7.38905621  , 20.08553696 ],
            #         [54.59814835 , 148.41316223, 403.42880249]])
            print(multi_exp.forward_log_det_jacobian(x))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6. , 15.])
    """

    def __init__(self, base, reinterpreted_batch_rank):
        if not isinstance(base, Transform):
            raise TypeError(
717 718
                f"Expected 'base' is Transform type, but get {type(base)}"
            )
719 720 721 722 723 724 725
        if reinterpreted_batch_rank <= 0:
            raise ValueError(
                f"Expected 'reinterpreted_batch_rank' is grater than zero, but got {reinterpreted_batch_rank}"
            )

        self._base = base
        self._reinterpreted_batch_rank = reinterpreted_batch_rank
726
        super().__init__()
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

    def _is_injective(self):
        return self._base._is_injective()

    def _forward(self, x):
        if x.dim() < self._domain.event_rank:
            raise ValueError("Input dimensions is less than event dimensions.")
        return self._base.forward(x)

    def _inverse(self, y):
        if y.dim() < self._codomain.event_rank:
            raise ValueError("Input dimensions is less than event dimensions.")
        return self._base.inverse(y)

    def _forward_log_det_jacobian(self, x):
        return self._base.forward_log_det_jacobian(x).sum(
743 744
            list(range(-self._reinterpreted_batch_rank, 0))
        )
745 746 747 748 749 750 751 752 753

    def _forward_shape(self, shape):
        return self._base.forward_shape(shape)

    def _inverse_shape(self, shape):
        return self._base.inverse_shape(shape)

    @property
    def _domain(self):
754 755 756
        return variable.Independent(
            self._base._domain, self._reinterpreted_batch_rank
        )
757 758 759

    @property
    def _codomain(self):
760 761 762
        return variable.Independent(
            self._base._codomain, self._reinterpreted_batch_rank
        )
763 764 765 766 767 768 769 770


class PowerTransform(Transform):
    r"""
    Power transformation with mapping :math:`y = x^{\text{power}}`.

    Args:
        power (Tensor): The power parameter.
771

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1., 2.])
            power = paddle.distribution.PowerTransform(paddle.to_tensor(2.))

            print(power.forward(x))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 4.])
            print(power.inverse(power.forward(x)))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 2.])
            print(power.forward_log_det_jacobian(x))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.69314718, 1.38629436])
    """
    _type = Type.BIJECTION

    def __init__(self, power):
        if not isinstance(power, paddle.fluid.framework.Variable):
            raise TypeError(
796 797
                f"Expected 'power' is a tensor, but got {type(power)}"
            )
798
        self._power = power
799
        super().__init__()
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

    @property
    def power(self):
        return self._power

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.positive

    def _forward(self, x):
        return x.pow(self._power)

    def _inverse(self, y):
        return y.pow(1 / self._power)

    def _forward_log_det_jacobian(self, x):
        return (self._power * x.pow(self._power - 1)).abs().log()

    def _forward_shape(self, shape):
        return tuple(paddle.broadcast_shape(shape, self._power.shape))

    def _inverse_shape(self, shape):
        return tuple(paddle.broadcast_shape(shape, self._power.shape))


class ReshapeTransform(Transform):
    r"""Reshape the event shape of a tensor.

832
    Note that ``in_event_shape`` and ``out_event_shape`` must have the same
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
    number of elements.

    Args:
        in_event_shape(Sequence[int]): The input event shape.
        out_event_shape(Sequence[int]): The output event shape.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.ones((1,2,3))
            reshape_transform = paddle.distribution.ReshapeTransform((2, 3), (3, 2))
            print(reshape_transform.forward_shape((1,2,3)))
            # (5, 2, 6)
            print(reshape_transform.forward(x))
            # Tensor(shape=[1, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[1., 1.],
            #          [1., 1.],
            #          [1., 1.]]])
            print(reshape_transform.inverse(reshape_transform.forward(x)))
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[1., 1., 1.],
            #          [1., 1., 1.]]])
            print(reshape_transform.forward_log_det_jacobian(x))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.])
    """
    _type = Type.BIJECTION

    def __init__(self, in_event_shape, out_event_shape):
        if not isinstance(in_event_shape, typing.Sequence) or not isinstance(
866 867
            out_event_shape, typing.Sequence
        ):
868 869 870
            raise TypeError(
                f"Expected type of 'in_event_shape' and 'out_event_shape' is "
                f"Squence[int], but got 'in_event_shape': {in_event_shape}, "
871 872
                f"'out_event_shape': {out_event_shape}"
            )
873 874 875 876 877 878 879
        in_size = 1
        for e in in_event_shape:
            in_size *= e
        out_size = 1
        for e in out_event_shape:
            out_size *= e
        if in_size != out_size:
880 881
            raise ValueError(
                f"The numel of 'in_event_shape' should be 'out_event_shape', "
882
                f"but got {in_size}!={out_size}"
883 884 885 886
            )

        self._in_event_shape = tuple(in_event_shape)
        self._out_event_shape = tuple(out_event_shape)
887
        super().__init__()
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

    @property
    def in_event_shape(self):
        return self._in_event_shape

    @property
    def out_event_shape(self):
        return self._out_event_shape

    @property
    def _domain(self):
        return variable.Independent(variable.real, len(self._in_event_shape))

    @property
    def _codomain(self):
        return variable.Independent(variable.real, len(self._out_event_shape))

    def _forward(self, x):
        return x.reshape(
907 908 909
            tuple(x.shape)[: x.dim() - len(self._in_event_shape)]
            + self._out_event_shape
        )
910 911 912

    def _inverse(self, y):
        return y.reshape(
913 914 915
            tuple(y.shape)[: y.dim() - len(self._out_event_shape)]
            + self._in_event_shape
        )
916 917 918 919 920 921

    def _forward_shape(self, shape):
        if len(shape) < len(self._in_event_shape):
            raise ValueError(
                f"Expected length of 'shape' is not less than {len(self._in_event_shape)}, but got {len(shape)}"
            )
922 923 924
        if tuple(shape[-len(self._in_event_shape) :]) != tuple(
            self._in_event_shape
        ):
925 926 927
            raise ValueError(
                f"Event shape mismatch, expected: {self._in_event_shape}, but got {shape[-len(self._in_event_shape):]}"
            )
928 929 930
        return (
            tuple(shape[: -len(self._in_event_shape)]) + self._out_event_shape
        )
931 932 933 934 935 936

    def _inverse_shape(self, shape):
        if len(shape) < len(self._out_event_shape):
            raise ValueError(
                f"Expected 'shape' length is not less than {len(self._out_event_shape)}, but got {len(shape)}"
            )
937 938 939
        if tuple(shape[-len(self._out_event_shape) :]) != tuple(
            self._out_event_shape
        ):
940 941 942
            raise ValueError(
                f"Event shape mismatch, expected: {self._out_event_shape}, but got {shape[-len(self._out_event_shape):]}"
            )
943 944 945
        return (
            tuple(shape[: -len(self._out_event_shape)]) + self._in_event_shape
        )
946 947

    def _forward_log_det_jacobian(self, x):
948
        # TODO(zhouwei): should not set shape to [1], which is []
949
        shape = x.shape[: x.dim() - len(self._in_event_shape)] or [1]
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
        return paddle.zeros(shape, dtype=x.dtype)


class SigmoidTransform(Transform):
    r"""Sigmoid transformation with mapping :math:`y = \frac{1}{1 + \exp(-x)}` and :math:`x = \text{logit}(y)`.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.ones((2,3))
            t = paddle.distribution.SigmoidTransform()
            print(t.forward(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.73105860, 0.73105860, 0.73105860],
            #         [0.73105860, 0.73105860, 0.73105860]])
            print(t.inverse(t.forward(x)))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.00000012, 1.00000012, 1.00000012],
            #         [1.00000012, 1.00000012, 1.00000012]])
            print(t.forward_log_det_jacobian(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-1.62652326, -1.62652326, -1.62652326],
            #         [-1.62652326, -1.62652326, -1.62652326]])
    """

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
984
        return variable.Variable(False, 0, constraint.Range(0.0, 1.0))
985 986 987 988 989 990 991 992 993 994 995 996 997 998

    def _forward(self, x):
        return F.sigmoid(x)

    def _inverse(self, y):
        return y.log() - (-y).log1p()

    def _forward_log_det_jacobian(self, x):
        return -F.softplus(-x) - F.softplus(x)


class SoftmaxTransform(Transform):
    r"""Softmax transformation with mapping :math:`y=\exp(x)` then normalizing.

999 1000
    It's generally used to convert unconstrained space to simplex. This mapping
    is not injective, so ``forward_log_det_jacobian`` and
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    ``inverse_log_det_jacobian`` are not implemented.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.ones((2,3))
            t = paddle.distribution.SoftmaxTransform()
            print(t.forward(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.33333334, 0.33333334, 0.33333334],
            #         [0.33333334, 0.33333334, 0.33333334]])
            print(t.inverse(t.forward(x)))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-1.09861231, -1.09861231, -1.09861231],
            #         [-1.09861231, -1.09861231, -1.09861231]])
    """
    _type = Type.OTHER

    @property
    def _domain(self):
        return variable.Independent(variable.real, 1)

    @property
    def _codomain(self):
        return variable.Variable(False, 1, constraint.simplex)

    def _forward(self, x):
        x = (x - x.max(-1, keepdim=True)[0]).exp()
        return x / x.sum(-1, keepdim=True)

    def _inverse(self, y):
        return y.log()

    def _forward_shape(self, shape):
        if len(shape) < 1:
            raise ValueError(
                f"Expected length of shape is grater than 1, but got {len(shape)}"
            )
        return shape

    def _inverse_shape(self, shape):
        if len(shape) < 1:
            raise ValueError(
                f"Expected length of shape is grater than 1, but got {len(shape)}"
            )
        return shape


class StackTransform(Transform):
1053
    r"""``StackTransform`` applies a sequence of transformations along the
1054 1055 1056
    specific axis.

    Args:
1057 1058 1059
        transforms (Sequence[Transform]): The sequence of transformations.
        axis (int, optional): The axis along which will be transformed. default
            value is 0.
1060 1061 1062 1063

    Examples:

        .. code-block:: python
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
            import paddle

            x = paddle.stack(
                (paddle.to_tensor([1., 2., 3.]), paddle.to_tensor([1, 2., 3.])), 1)
            t = paddle.distribution.StackTransform(
                (paddle.distribution.ExpTransform(),
                paddle.distribution.PowerTransform(paddle.to_tensor(2.))),
                1
            )
            print(t.forward(x))
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2.71828175 , 1.         ],
            #         [7.38905621 , 4.         ],
            #         [20.08553696, 9.         ]])
1079

1080 1081 1082 1083 1084
            print(t.inverse(t.forward(x)))
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 1.],
            #         [2., 2.],
            #         [3., 3.]])
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            print(t.forward_log_det_jacobian(x))
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.        , 0.69314718],
            #         [2.        , 1.38629436],
            #         [3.        , 1.79175949]])
    """

    def __init__(self, transforms, axis=0):
        if not transforms or not isinstance(transforms, typing.Sequence):
            raise TypeError(
                f"Expected 'transforms' is Sequence[Transform], but got {type(transforms)}."
            )
        if not all(isinstance(t, Transform) for t in transforms):
            raise TypeError(
1100 1101
                'Expected all element in transforms is Transform Type.'
            )
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
        if not isinstance(axis, int):
            raise TypeError(f"Expected 'axis' is int, but got{type(axis)}.")

        self._transforms = transforms
        self._axis = axis

    def _is_injective(self):
        return all(t._is_injective() for t in self._transforms)

    @property
    def transforms(self):
        return self._transforms

    @property
    def axis(self):
        return self._axis

    def _forward(self, x):
        self._check_size(x)
1121 1122 1123 1124 1125 1126 1127
        return paddle.stack(
            [
                t.forward(v)
                for v, t in zip(paddle.unstack(x, self._axis), self._transforms)
            ],
            self._axis,
        )
1128 1129 1130

    def _inverse(self, y):
        self._check_size(y)
1131 1132 1133 1134 1135 1136 1137
        return paddle.stack(
            [
                t.inverse(v)
                for v, t in zip(paddle.unstack(y, self._axis), self._transforms)
            ],
            self._axis,
        )
1138 1139 1140

    def _forward_log_det_jacobian(self, x):
        self._check_size(x)
1141 1142 1143 1144 1145 1146 1147
        return paddle.stack(
            [
                t.forward_log_det_jacobian(v)
                for v, t in zip(paddle.unstack(x, self._axis), self._transforms)
            ],
            self._axis,
        )
1148 1149 1150 1151 1152

    def _check_size(self, v):
        if not (-v.dim() <= self._axis < v.dim()):
            raise ValueError(
                f'Input dimensions {v.dim()} should be grater than stack '
1153 1154
                f'transform axis {self._axis}.'
            )
1155 1156 1157
        if v.shape[self._axis] != len(self._transforms):
            raise ValueError(
                f'Input size along {self._axis} should be equal to the '
1158 1159
                f'length of transforms.'
            )
1160 1161 1162 1163 1164 1165 1166

    @property
    def _domain(self):
        return variable.Stack([t._domain for t in self._transforms], self._axis)

    @property
    def _codomain(self):
1167 1168 1169
        return variable.Stack(
            [t._codomain for t in self._transforms], self._axis
        )
1170 1171 1172


class StickBreakingTransform(Transform):
1173
    r"""Convert an unconstrained vector to the simplex with one additional
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    dimension by the stick-breaking construction.

    Examples:

        .. code-block:: python

            import paddle


            x = paddle.to_tensor([1.,2.,3.])
            t = paddle.distribution.StickBreakingTransform()
            print(t.forward(x))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.47536686, 0.41287899, 0.10645414, 0.00530004])
            print(t.inverse(t.forward(x)))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.99999988, 2.        , 2.99999881])
            print(t.forward_log_det_jacobian(x))
1192 1193
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        -9.10835075)
1194 1195 1196 1197 1198 1199 1200 1201
    """

    _type = Type.BIJECTION

    def _forward(self, x):
        offset = x.shape[-1] + 1 - paddle.ones([x.shape[-1]]).cumsum(-1)
        z = F.sigmoid(x - offset.log())
        z_cumprod = (1 - z).cumprod(-1)
1202 1203 1204
        return F.pad(z, [0] * 2 * (len(x.shape) - 1) + [0, 1], value=1) * F.pad(
            z_cumprod, [0] * 2 * (len(x.shape) - 1) + [1, 0], value=1
        )
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

    def _inverse(self, y):
        y_crop = y[..., :-1]
        offset = y.shape[-1] - paddle.ones([y_crop.shape[-1]]).cumsum(-1)
        sf = 1 - y_crop.cumsum(-1)
        x = y_crop.log() - sf.log() + offset.log()
        return x

    def _forward_log_det_jacobian(self, x):
        y = self.forward(x)
        offset = x.shape[-1] + 1 - paddle.ones([x.shape[-1]]).cumsum(-1)
        x = x - offset.log()
        return (-x + F.log_sigmoid(x) + y[..., :-1].log()).sum(-1)

    def _forward_shape(self, shape):
        if not shape:
            raise ValueError(f"Expected 'shape' is not empty, but got {shape}")
1222
        return shape[:-1] + (shape[-1] + 1,)
1223 1224 1225 1226

    def _inverse_shape(self, shape):
        if not shape:
            raise ValueError(f"Expected 'shape' is not empty, but got {shape}")
1227
        return shape[:-1] + (shape[-1] - 1,)
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

    @property
    def _domain(self):
        return variable.Independent(variable.real, 1)

    @property
    def _codomain(self):
        return variable.Variable(False, 1, constraint.simplex)


class TanhTransform(Transform):
    r"""Tanh transformation with mapping :math:`y = \tanh(x)`.

1241
    Examples:
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

        .. code-block:: python

            import paddle

            tanh = paddle.distribution.TanhTransform()

            x = paddle.to_tensor([[1., 2., 3.], [4., 5., 6.]])

            print(tanh.forward(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.76159418, 0.96402758, 0.99505478],
            #         [0.99932933, 0.99990922, 0.99998772]])
            print(tanh.inverse(tanh.forward(x)))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.00000012, 2.        , 3.00000286],
            #         [4.00002146, 5.00009823, 6.00039864]])
            print(tanh.forward_log_det_jacobian(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.86756170 , -2.65000558 , -4.61865711 ],
            #         [-6.61437654 , -8.61379623 , -10.61371803]])
            print(tanh.inverse_log_det_jacobian(tanh.forward(x)))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.86756176 , 2.65000558 , 4.61866283 ],
            #         [6.61441946 , 8.61399269 , 10.61451530]])
    """
    _type = Type.BIJECTION

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.Variable(False, 0, constraint.Range(-1.0, 1.0))

    def _forward(self, x):
        return x.tanh()

    def _inverse(self, y):
        return y.atanh()

    def _forward_log_det_jacobian(self, x):
1285 1286
        """We implicitly rely on _forward_log_det_jacobian rather than
        explicitly implement ``_inverse_log_det_jacobian`` since directly using
1287 1288 1289 1290
        ``-tf.math.log1p(-tf.square(y))`` has lower numerical precision.

        See details: https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py#L69-L80
        """
1291
        return 2.0 * (math.log(2.0) - x - F.softplus(-2.0 * x))