transform.py 43.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import enum
import functools
import math
import numbers
import operator
import typing

import paddle
import paddle.nn.functional as F
from paddle.distribution import (constraint, distribution,
                                 transformed_distribution, variable)

__all__ = [  # noqa
    'Transform',
    'AbsTransform',
    'AffineTransform',
    'ChainTransform',
    'ExpTransform',
    'IndependentTransform',
    'PowerTransform',
    'ReshapeTransform',
    'SigmoidTransform',
    'SoftmaxTransform',
    'StackTransform',
    'StickBreakingTransform',
    'TanhTransform'
]


class Type(enum.Enum):
    """Mapping type of a transformation.
    """
    BIJECTION = 'bijection'  # bijective(injective and surjective)
    INJECTION = 'injection'  # injective-only
    SURJECTION = 'surjection'  # surjective-only
    OTHER = 'other'  # general, neither injective nor surjective

    @classmethod
    def is_injective(cls, _type):
        """Both bijection and injection are injective mapping.
        """
        return _type in (cls.BIJECTION, cls.INJECTION)


class Transform(object):
    r"""Base class for the transformations of random variables.

    ``Transform`` can be used to represent any differentiable and injective 
    function from the subset of :math:`R^n` to subset of :math:`R^m`, generally 
    used for transforming a random sample generated by ``Distribution`` 
    instance. 

    Suppose :math:`X` is a K-dimensional random variable with probability 
    density function :math:`p_X(x)`. A new random variable :math:`Y = f(X)` may 
    be defined by transforming :math:`X` with a suitably well-behaved funciton 
    :math:`f`. It suffices for what follows to note that if f is one-to-one and 
    its inverse :math:`f^{-1}` have a well-defined Jacobian, then the density of 
    :math:`Y` is

    .. math::

        p_Y(y) = p_X(f^{-1}(y)) |det J_{f^{-1}}(y)|

    where det is the matrix determinant operation and :math:`J_{f^{-1}}(y)` is 
    the Jacobian matrix of :math:`f^{-1}` evaluated at :math:`y`.
    Taking :math:`x = f^{-1}(y)`, the Jacobian matrix is defined by

    .. math::

        J(y) = \begin{bmatrix}
        {\frac{\partial x_1}{\partial y_1}} &{\frac{\partial x_1}{\partial y_2}} 
        &{\cdots} &{\frac{\partial x_1}{\partial y_K}} \\
        {\frac{\partial x_2}{\partial y_1}}  &{\frac{\partial x_2}
        {\partial y_2}}&{\cdots} &{\frac{\partial x_2}{\partial y_K}} \\
        {\vdots} &{\vdots} &{\ddots} &{\vdots}\\
        {\frac{\partial x_K}{\partial y_1}} &{\frac{\partial x_K}{\partial y_2}} 
        &{\cdots} &{\frac{\partial x_K}{\partial y_K}} 
        \end{bmatrix}

    A ``Transform`` can be characterized by three operations:

        #. forward
           Forward implements :math:`x \rightarrow f(x)`, and is used to convert 
           one random outcome into another.
        #. inverse
           Undoes the transformation :math:`y \rightarrow f^{-1}(y)`.  
        #. log_det_jacobian
           The log of the absolute value of the determinant of the matrix of all
           first-order partial derivatives of the inverse function.

    Subclass typically implement follow methods:

        * _forward
        * _inverse
        * _forward_log_det_jacobian
        * _inverse_log_det_jacobian (optional)

    If the transform changes the shape of the input, you must also implemented:

        * _forward_shape
        * _inverse_shape
        
    """
    _type = Type.INJECTION

    def __init__(self):
        super(Transform, self).__init__()

    @classmethod
    def _is_injective(cls):
        """Is the transformation type one-to-one or not.

        Returns:
            bool: ``True`` denotes injective. ``False`` denotes non-injective.
        """
        return Type.is_injective(cls._type)

    def __call__(self, input):
        """Make this instance as a callable object. The return value is 
        depening on the input type. 

        * If the input is a ``Tensor`` instance, return 
          ``self.forward(input)`` .
        * If the input is a ``Distribution`` instance, return 
          ``TransformedDistribution(base=input, transforms=[self])`` .
        * If the input is a ``Transform`` instance, return 
          ``ChainTransform([self, input])`` .

        Args:
            input (Tensor|Distribution|Transform): The input value.

        Returns:
            [Tensor|TransformedDistribution|ChainTransform]: The return value.
        """
        if isinstance(input, distribution.Distribution):
            return transformed_distribution.TransformedDistribution(input,
                                                                    [self])
        if isinstance(input, Transform):
            return ChainTransform([self, input])
        return self.forward(x)

    def forward(self, x):
        """Forward transformation with mapping :math:`y = f(x)`. 

        Useful for turning one random outcome into another.

        Args:
            x (Tensos): Input parameter, generally is a sample generated 
                from ``Distribution``.

        Returns:
            Tensor: Outcome of forward transformation.
        """
        if not isinstance(x, paddle.fluid.framework.Variable):
            raise TypeError(
                f"Expected 'x' is a Tensor or Real, but got {type(x)}.")
        if x.dim() < self._domain.event_rank:
            raise ValueError(
                f'The dimensions of x({x.dim()}) should be '
                f'grater than or equal to {self._domain.event_rank}')
        return self._forward(x)

    def inverse(self, y):
        """Inverse transformation :math:`x = f^{-1}(y)`. It's useful for "reversing" 
        a transformation to compute one probability in terms of another.

        Args:
            y (Tensor): Input parameter for inverse transformation.

        Returns:
            Tensor: Outcome of inverse transform.
        """
        if not isinstance(y, paddle.fluid.framework.Variable):
            raise TypeError(
                f"Expected 'y' is a Tensor or Real, but got {type(y)}.")
        if y.dim() < self._codomain.event_rank:
            raise ValueError(
                f'The dimensions of y({y.dim()}) should be '
                f'grater than or equal to {self._codomain.event_rank}')
        return self._inverse(y)

    def forward_log_det_jacobian(self, x):
        """The log of the absolute value of the determinant of the matrix of all 
        first-order partial derivatives of the inverse function.

        Args:
            x (Tensor): Input tensor, generally is a sample generated from 
                ``Distribution``

        Returns:
            Tensor: The log of the absolute value of Jacobian determinant. 
        """
        if not isinstance(x, paddle.fluid.framework.Variable):
            raise TypeError(
                f"Expected 'y' is a Tensor or Real, but got {type(x)}.")
        if isinstance(x, paddle.fluid.framework.Variable) and x.dim(
        ) < self._domain.event_rank:
            raise ValueError(
                f'The dimensions of x({x.dim()}) should be '
                f'grater than or equal to {self._domain.event_rank}')
        if not self._is_injective():
            raise NotImplementedError(
                "forward_log_det_jacobian can't be implemented for non-injective"
                "transforms.")

        return self._call_forward_log_det_jacobian(x)

    def inverse_log_det_jacobian(self, y):
        """Compute :math:`log|det J_{f^{-1}}(y)|`.
        Note that ``forward_log_det_jacobian`` is the negative of this function, 
        evaluated at :math:`f^{-1}(y)`.

        Args:
            y (Tensor): The input to the ``inverse`` Jacobian determinant 
                evaluation.

        Returns:
            Tensor: The value of :math:`log|det J_{f^{-1}}(y)|`.
        """
        if not isinstance(y, paddle.fluid.framework.Variable):
            raise TypeError(f"Expected 'y' is a Tensor, but got {type(y)}.")
        if y.dim() < self._codomain.event_rank:
            raise ValueError(
                f'The dimensions of y({y.dim()}) should be '
                f'grater than or equal to {self._codomain.event_rank}')
        return self._call_inverse_log_det_jacobian(y)

    def forward_shape(self, shape):
        """Infer the shape of forward transformation.

        Args:
            shape (Sequence[int]): The input shape.

        Returns:
            Sequence[int]: The output shape.
        """
        if not isinstance(shape, typing.Sequence):
            raise TypeError(
                f"Expected shape is Sequence[int] type, but got {type(shape)}.")
        return self._forward_shape(shape)

    def inverse_shape(self, shape):
        """Infer the shape of inverse transformation.

        Args:
            shape (Sequence[int]): The input shape of inverse transformation.

        Returns:
            Sequence[int]: The output shape of inverse transformation.
        """
        if not isinstance(shape, typing.Sequence):
            raise TypeError(
                f"Expected shape is Sequence[int] type, but got {type(shape)}.")
        return self._inverse_shape(shape)

    @property
    def _domain(self):
        """The domain of this transformation"""
        return variable.real

    @property
    def _codomain(self):
        """The codomain of this transformation"""
        return variable.real

    def _forward(self, x):
        """Inner method for publid API ``forward``, subclass should 
        overwrite this method for supporting forward transformation.
        """
        raise NotImplementedError('Forward not implemented')

    def _inverse(self, y):
        """Inner method of public API ``inverse``, subclass should 
        overwrite this method for supporting inverse transformation.
        """
        raise NotImplementedError('Inverse not implemented')

    def _call_forward_log_det_jacobian(self, x):
        """Inner method called by ``forward_log_det_jacobian``."""
        if hasattr(self, '_forward_log_det_jacobian'):
            return self._forward_log_det_jacobian(x)
        if hasattr(self, '_inverse_log_det_jacobian'):
            return -self._inverse_log_det_jacobian(self.forward(y))
        raise NotImplementedError(
            'Neither _forward_log_det_jacobian nor _inverse_log_det_jacobian'
            'is implemented. One of them is required.')

    def _call_inverse_log_det_jacobian(self, y):
        """Inner method called by ``inverse_log_det_jacobian``"""
        if hasattr(self, '_inverse_log_det_jacobian'):
            return self._inverse_log_det_jacobian(y)
        if hasattr(self, '_forward_log_det_jacobian'):
            return -self._forward_log_det_jacobian(self._inverse(y))
        raise NotImplementedError(
            'Neither _forward_log_det_jacobian nor _inverse_log_det_jacobian '
            'is implemented. One of them is required')

    def _forward_shape(self, shape):
        """Inner method called by ``forward_shape``, which is used to infer the 
        forward shape. Subclass should overwrite this method for supporting 
        ``forward_shape``.
        """
        return shape

    def _inverse_shape(self, shape):
        """Inner method called by ``inverse_shape``, whic is used to infer the 
        invese shape. Subclass should overwrite this method for supporting 
        ``inverse_shape``.
        """
        return shape


class AbsTransform(Transform):
    r"""Absolute transformation with formula :math:`y = f(x) = abs(x)`, 
    element-wise.

    This non-injective transformation allows for transformations of scalar 
    distributions with the absolute value function, which maps ``(-inf, inf)`` 
    to ``[0, inf)`` .

    * For ``y`` in ``(0, inf)`` , ``AbsTransform.inverse(y)`` returns the set invese 
      ``{x  in (-inf, inf) : |x| = y}`` as a tuple, ``-y, y`` .
    * For ``y`` equal ``0`` , ``AbsTransform.inverse(0)`` returns ``0, 0``, which is not 
      the set inverse (the set inverse is the singleton {0}), but "works" in 
      conjunction with ``TransformedDistribution`` to produce a left 
      semi-continuous pdf.
    * For ``y`` in ``(-inf, 0)`` , ``AbsTransform.inverse(y)`` returns the 
      wrong thing ``-y, y``. This is done for efficiency.

    Examples:

        .. code-block:: python

            import paddle

            abs = paddle.distribution.AbsTransform()

            print(abs.forward(paddle.to_tensor([-1., 0., 1.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 0., 1.])

            print(abs.inverse(paddle.to_tensor(1.)))
            # (Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-1.]), Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.]))

            # The |dX/dY| is constant 1. So Log|dX/dY| == 0
            print(abs.inverse_log_det_jacobian(paddle.to_tensor(1.)))
            # (Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.), Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.))

            #Special case handling of 0.
            print(abs.inverse(paddle.to_tensor(0.)))
            # (Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.]), Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.]))
            print(abs.inverse_log_det_jacobian(paddle.to_tensor(0.)))
            # (Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.), Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.))

    """
    _type = Type.SURJECTION

    def _forward(self, x):
        return x.abs()

    def _inverse(self, y):
        return -y, y

    def _inverse_log_det_jacobian(self, y):
        zero = paddle.zeros([1], dtype=y.dtype)
        return zero, zero

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.positive


class AffineTransform(Transform):
    r"""Affine transformation with mapping 
    :math:`y = \text{loc} + \text{scale} \times x`.

    Args:
        loc (Tensor): The location parameter.
        scale (Tensor): The scale parameter.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1., 2.])
            affine = paddle.distribution.AffineTransform(paddle.to_tensor(0.), paddle.to_tensor(1.))

            print(affine.forward(x))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 2.])
            print(affine.inverse(affine.forward(x)))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 2.])
            print(affine.forward_log_det_jacobian(x))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.])
    """
    _type = Type.BIJECTION

    def __init__(self, loc, scale):
        if not isinstance(loc, paddle.fluid.framework.Variable):
            raise TypeError(f"Expected 'loc' is a Tensor, but got {type(loc)}")
        if not isinstance(scale, paddle.fluid.framework.Variable):
            raise TypeError(
                f"Expected scale is a Tensor, but got {type(scale)}")
        self._loc = loc
        self._scale = scale
        super(AffineTransform, self).__init__()

    @property
    def loc(self):
        return self._loc

    @property
    def scale(self):
        return self._scale

    def _forward(self, x):
        return self._loc + self._scale * x

    def _inverse(self, y):
        return (y - self._loc) / self._scale

    def _forward_log_det_jacobian(self, x):
        return paddle.abs(self._scale).log()

    def _forward_shape(self, shape):
        return tuple(
            paddle.broadcast_shape(
                paddle.broadcast_shape(shape, self._loc.shape),
                self._scale.shape))

    def _inverse_shape(self, shape):
        return tuple(
            paddle.broadcast_shape(
                paddle.broadcast_shape(shape, self._loc.shape),
                self._scale.shape))

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.real


class ChainTransform(Transform):
    r"""Composes multiple transforms in a chain.

    Args:
        transforms (Sequence[Transform]): A sequence of transformations.

    Examples:

        .. code-block:: python

            import paddle


            x = paddle.to_tensor([0., 1., 2., 3.])

            chain = paddle.distribution.ChainTransform((
                paddle.distribution.AffineTransform(
                    paddle.to_tensor(0.), paddle.to_tensor(1.)),
                paddle.distribution.ExpTransform()
            ))
            print(chain.forward(x))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1.         , 2.71828175 , 7.38905621 , 20.08553696])
            print(chain.inverse(chain.forward(x)))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0., 1., 2., 3.])
            print(chain.forward_log_det_jacobian(x))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0., 1., 2., 3.])
            print(chain.inverse_log_det_jacobian(chain.forward(x)))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 0., -1., -2., -3.])
    """

    def __init__(self, transforms):
        if not isinstance(transforms, typing.Sequence):
            raise TypeError(
                f"Expected type of 'transforms' is Sequence, but got {type(transforms)}"
            )
        if not all(isinstance(t, Transform) for t in transforms):
            raise TypeError(
                "All elements of transforms should be Transform type.")

        self.transforms = transforms
        super(ChainTransform, self).__init__()

    def _is_injective(self):
        return all(t._is_injective() for t in self.transforms)

    def _forward(self, x):
        for transform in self.transforms:
            x = transform.forward(x)
        return x

    def _inverse(self, y):
        for transform in reversed(self.transforms):
            y = transform.inverse(y)
        return y

    def _forward_log_det_jacobian(self, x):
        value = 0.
        event_rank = self._domain.event_rank
        for t in self.transforms:
            value += self._sum_rightmost(
                t.forward_log_det_jacobian(x),
                event_rank - t._domain.event_rank)
            x = t.forward(x)
            event_rank += t._codomain.event_rank - t._domain.event_rank
        return value

    def _forward_shape(self, shape):
        for transform in self.transforms:
            shape = transform.forward_shape(shape)
        return shape

    def _inverse_shape(self, shape):
        for transform in self.transforms:
            shape = transform.inverse_shape(shape)
        return shape

    def _sum_rightmost(self, value, n):
        """sum value along rightmost n dim"""
        return value.sum(list(range(-n, 0))) if n > 0 else value

    @property
    def _domain(self):
        domain = self.transforms[0]._domain

        # Compute the lower bound of input dimensions for chain transform.
        #
        # Suppose the dimensions of input tensor is N, and chain [t0,...ti,...tm],
        # ti(in) denotes ti.domain.event_rank, ti(out) denotes ti.codomain.event_rank,
        # delta(ti) denotes (ti(out) - ti(in)).
        # For transform ti, N shoud satisfy the constraint:
        #   N + delta(t0) + delta(t1)...delta(t(i-1)) >= ti(in)
        # So, for all transform in chain, N shoud satisfy follow constraints:
        #   t0: N >= t0(in)
        #   t1: N >= t1(in) - delta(t0)
        #   ...
        #   tm: N >= tm(in) - ... - delta(ti) - ... - delta(t0)
        #
        # Above problem can be solved more effectively use dynamic programming.
        # Let N(i) denotes lower bound of transform ti, than the state
        # transition equation is:
        #   N(i) = max{N(i+1)-delta(ti), ti(in)}
        event_rank = self.transforms[-1]._codomain.event_rank
        for t in reversed(self.transforms):
            event_rank -= t._codomain.event_rank - t._domain.event_rank
            event_rank = max(event_rank, t._domain.event_rank)

        return variable.Independent(domain, event_rank - domain.event_rank)

    @property
    def _codomain(self):
        codomain = self.transforms[-1]._codomain

        event_rank = self.transforms[0]._domain.event_rank
        for t in self.transforms:
            event_rank += t._codomain.event_rank - t._domain.event_rank
            event_rank = max(event_rank, t._codomain.event_rank)

        return variable.Independent(codomain, event_rank - codomain.event_rank)


class ExpTransform(Transform):
    r"""Exponent transformation with mapping :math:`y = \exp(x)`.

    Exapmles:

        .. code-block:: python

            import paddle

            exp = paddle.distribution.ExpTransform()
            print(exp.forward(paddle.to_tensor([1., 2., 3.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [2.71828175 , 7.38905621 , 20.08553696])

            print(exp.inverse(paddle.to_tensor([1., 2., 3.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.        , 0.69314718, 1.09861231])

            print(exp.forward_log_det_jacobian(paddle.to_tensor([1., 2., 3.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 2., 3.])

            print(exp.inverse_log_det_jacobian(paddle.to_tensor([1., 2., 3.])))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [ 0.        , -0.69314718, -1.09861231])
    """
    _type = Type.BIJECTION

    def __init__(self):
        super(ExpTransform, self).__init__()

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.positive

    def _forward(self, x):
        return x.exp()

    def _inverse(self, y):
        return y.log()

    def _forward_log_det_jacobian(self, x):
        return x


class IndependentTransform(Transform):
    r"""
    ``IndependentTransform`` wraps a base transformation, reinterprets 
    some of the rightmost batch axes as event axes.

    Generally, it is used to expand the event axes. This has no effect on the
    forward or inverse transformaion, but does sum out the 
    ``reinterpretd_bach_rank`` rightmost dimensions in computing the determinant 
    of Jacobian matrix.

    To see this, consider the ``ExpTransform`` applied to a Tensor which has 
    sample, batch, and event ``(S,B,E)`` shape semantics. Suppose the Tensor's 
    paritioned-shape is ``(S=[4], B=[2, 2], E=[3])`` , reinterpreted_batch_rank
    is 1. Then the reinterpreted Tensor's shape  is ``(S=[4], B=[2], E=[2, 3])`` .
    The shape returned by ``forward`` and ``inverse`` is unchanged, ie, 
    ``[4,2,2,3]`` . However the shape returned by ``inverse_log_det_jacobian`` 
    is ``[4,2]``, because the Jacobian determinant is a reduction over the 
    event dimensions.

    Args:
        base (Transform): The base transformation.
        reinterpreted_batch_rank (int): The num of rightmost batch rank that 
            will be reinterpreted as event rank.
    
    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 2., 3.], [4., 5., 6.]])

            # Exponential transform with event_rank = 1
            multi_exp = paddle.distribution.IndependentTransform(
                paddle.distribution.ExpTransform(), 1)
            print(multi_exp.forward(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2.71828175  , 7.38905621  , 20.08553696 ],
            #         [54.59814835 , 148.41316223, 403.42880249]])
            print(multi_exp.forward_log_det_jacobian(x))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6. , 15.])
    """

    def __init__(self, base, reinterpreted_batch_rank):
        if not isinstance(base, Transform):
            raise TypeError(
                f"Expected 'base' is Transform type, but get {type(base)}")
        if reinterpreted_batch_rank <= 0:
            raise ValueError(
                f"Expected 'reinterpreted_batch_rank' is grater than zero, but got {reinterpreted_batch_rank}"
            )

        self._base = base
        self._reinterpreted_batch_rank = reinterpreted_batch_rank
        super(IndependentTransform, self).__init__()

    def _is_injective(self):
        return self._base._is_injective()

    def _forward(self, x):
        if x.dim() < self._domain.event_rank:
            raise ValueError("Input dimensions is less than event dimensions.")
        return self._base.forward(x)

    def _inverse(self, y):
        if y.dim() < self._codomain.event_rank:
            raise ValueError("Input dimensions is less than event dimensions.")
        return self._base.inverse(y)

    def _forward_log_det_jacobian(self, x):
        return self._base.forward_log_det_jacobian(x).sum(
            list(range(-self._reinterpreted_batch_rank, 0)))

    def _forward_shape(self, shape):
        return self._base.forward_shape(shape)

    def _inverse_shape(self, shape):
        return self._base.inverse_shape(shape)

    @property
    def _domain(self):
        return variable.Independent(self._base._domain,
                                    self._reinterpreted_batch_rank)

    @property
    def _codomain(self):
        return variable.Independent(self._base._codomain,
                                    self._reinterpreted_batch_rank)


class PowerTransform(Transform):
    r"""
    Power transformation with mapping :math:`y = x^{\text{power}}`.

    Args:
        power (Tensor): The power parameter.
    
    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1., 2.])
            power = paddle.distribution.PowerTransform(paddle.to_tensor(2.))

            print(power.forward(x))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 4.])
            print(power.inverse(power.forward(x)))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [1., 2.])
            print(power.forward_log_det_jacobian(x))
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.69314718, 1.38629436])
    """
    _type = Type.BIJECTION

    def __init__(self, power):
        if not isinstance(power, paddle.fluid.framework.Variable):
            raise TypeError(
                f"Expected 'power' is a tensor, but got {type(power)}")
        self._power = power
        super(PowerTransform, self).__init__()

    @property
    def power(self):
        return self._power

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.positive

    def _forward(self, x):
        return x.pow(self._power)

    def _inverse(self, y):
        return y.pow(1 / self._power)

    def _forward_log_det_jacobian(self, x):
        return (self._power * x.pow(self._power - 1)).abs().log()

    def _forward_shape(self, shape):
        return tuple(paddle.broadcast_shape(shape, self._power.shape))

    def _inverse_shape(self, shape):
        return tuple(paddle.broadcast_shape(shape, self._power.shape))


class ReshapeTransform(Transform):
    r"""Reshape the event shape of a tensor.

    Note that ``in_event_shape`` and ``out_event_shape`` must have the same 
    number of elements.

    Args:
        in_event_shape(Sequence[int]): The input event shape.
        out_event_shape(Sequence[int]): The output event shape.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.ones((1,2,3))
            reshape_transform = paddle.distribution.ReshapeTransform((2, 3), (3, 2))
            print(reshape_transform.forward_shape((1,2,3)))
            # (5, 2, 6)
            print(reshape_transform.forward(x))
            # Tensor(shape=[1, 3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[1., 1.],
            #          [1., 1.],
            #          [1., 1.]]])
            print(reshape_transform.inverse(reshape_transform.forward(x)))
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[1., 1., 1.],
            #          [1., 1., 1.]]])
            print(reshape_transform.forward_log_det_jacobian(x))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.])
    """
    _type = Type.BIJECTION

    def __init__(self, in_event_shape, out_event_shape):
        if not isinstance(in_event_shape, typing.Sequence) or not isinstance(
                out_event_shape, typing.Sequence):
            raise TypeError(
                f"Expected type of 'in_event_shape' and 'out_event_shape' is "
                f"Squence[int], but got 'in_event_shape': {in_event_shape}, "
                f"'out_event_shape': {out_event_shape}")
        if functools.reduce(operator.mul, in_event_shape) != functools.reduce(
                operator.mul, out_event_shape):
            raise ValueError(
                f"The numel of 'in_event_shape' should be 'out_event_shape', "
                f"but got {functools.reduce(operator.mul, in_event_shape)}!={functools.reduce(operator.mul, out_event_shape)}"
            )

        self._in_event_shape = tuple(in_event_shape)
        self._out_event_shape = tuple(out_event_shape)
        super(ReshapeTransform, self).__init__()

    @property
    def in_event_shape(self):
        return self._in_event_shape

    @property
    def out_event_shape(self):
        return self._out_event_shape

    @property
    def _domain(self):
        return variable.Independent(variable.real, len(self._in_event_shape))

    @property
    def _codomain(self):
        return variable.Independent(variable.real, len(self._out_event_shape))

    def _forward(self, x):
        return x.reshape(
            tuple(x.shape)[:x.dim() - len(self._in_event_shape)] +
            self._out_event_shape)

    def _inverse(self, y):
        return y.reshape(
            tuple(y.shape)[:y.dim() - len(self._out_event_shape)] +
            self._in_event_shape)

    def _forward_shape(self, shape):
        if len(shape) < len(self._in_event_shape):
            raise ValueError(
                f"Expected length of 'shape' is not less than {len(self._in_event_shape)}, but got {len(shape)}"
            )
        if shape[-len(self._in_event_shape):] != self._in_event_shape:
            raise ValueError(
                f"Event shape mismatch, expected: {self._in_event_shape}, but got {shape[-len(self._in_event_shape):]}"
            )
        return tuple(shape[:-len(self._in_event_shape)]) + self._out_event_shape

    def _inverse_shape(self, shape):
        if len(shape) < len(self._out_event_shape):
            raise ValueError(
                f"Expected 'shape' length is not less than {len(self._out_event_shape)}, but got {len(shape)}"
            )
        if shape[-len(self._out_event_shape):] != self._out_event_shape:
            raise ValueError(
                f"Event shape mismatch, expected: {self._out_event_shape}, but got {shape[-len(self._out_event_shape):]}"
            )
        return tuple(shape[:-len(self._out_event_shape)]) + self._in_event_shape

    def _forward_log_det_jacobian(self, x):
        # paddle.zeros not support zero dimension Tensor.
        shape = x.shape[:x.dim() - len(self._in_event_shape)] or [1]
        return paddle.zeros(shape, dtype=x.dtype)


class SigmoidTransform(Transform):
    r"""Sigmoid transformation with mapping :math:`y = \frac{1}{1 + \exp(-x)}` and :math:`x = \text{logit}(y)`.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.ones((2,3))
            t = paddle.distribution.SigmoidTransform()
            print(t.forward(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.73105860, 0.73105860, 0.73105860],
            #         [0.73105860, 0.73105860, 0.73105860]])
            print(t.inverse(t.forward(x)))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.00000012, 1.00000012, 1.00000012],
            #         [1.00000012, 1.00000012, 1.00000012]])
            print(t.forward_log_det_jacobian(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-1.62652326, -1.62652326, -1.62652326],
            #         [-1.62652326, -1.62652326, -1.62652326]])
    """

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.Variable(False, 0, constraint.Range(0., 1.))

    def _forward(self, x):
        return F.sigmoid(x)

    def _inverse(self, y):
        return y.log() - (-y).log1p()

    def _forward_log_det_jacobian(self, x):
        return -F.softplus(-x) - F.softplus(x)


class SoftmaxTransform(Transform):
    r"""Softmax transformation with mapping :math:`y=\exp(x)` then normalizing.

    It's generally used to convert unconstrained space to simplex. This mapping 
    is not injective, so ``forward_log_det_jacobian`` and 
    ``inverse_log_det_jacobian`` are not implemented.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.ones((2,3))
            t = paddle.distribution.SoftmaxTransform()
            print(t.forward(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.33333334, 0.33333334, 0.33333334],
            #         [0.33333334, 0.33333334, 0.33333334]])
            print(t.inverse(t.forward(x)))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-1.09861231, -1.09861231, -1.09861231],
            #         [-1.09861231, -1.09861231, -1.09861231]])
    """
    _type = Type.OTHER

    @property
    def _domain(self):
        return variable.Independent(variable.real, 1)

    @property
    def _codomain(self):
        return variable.Variable(False, 1, constraint.simplex)

    def _forward(self, x):
        x = (x - x.max(-1, keepdim=True)[0]).exp()
        return x / x.sum(-1, keepdim=True)

    def _inverse(self, y):
        return y.log()

    def _forward_shape(self, shape):
        if len(shape) < 1:
            raise ValueError(
                f"Expected length of shape is grater than 1, but got {len(shape)}"
            )
        return shape

    def _inverse_shape(self, shape):
        if len(shape) < 1:
            raise ValueError(
                f"Expected length of shape is grater than 1, but got {len(shape)}"
            )
        return shape


class StackTransform(Transform):
    r""" ``StackTransform`` applies a sequence of transformations along the 
    specific axis.

    Args:
        transforms(Sequence[Transform]): The sequence of transformations. 
        axis(int): The axis along which will be transformed.

    Examples:

        .. code-block:: python
        
            import paddle


            x = paddle.stack(
                (paddle.to_tensor([1., 2., 3.]), paddle.to_tensor([1, 2., 3.])), 1)
            t = paddle.distribution.StackTransform(
                (paddle.distribution.ExpTransform(),
                paddle.distribution.PowerTransform(paddle.to_tensor(2.))),
                1
            )
            print(t.forward(x))
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[2.71828175 , 1.         ],
            #         [7.38905621 , 4.         ],
            #         [20.08553696, 9.         ]])
            print(t.inverse(t.forward(x)))
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 1.],
            #         [2., 2.],
            #         [3., 3.]])
            print(t.forward_log_det_jacobian(x))
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.        , 0.69314718],
            #         [2.        , 1.38629436],
            #         [3.        , 1.79175949]])
    """

    def __init__(self, transforms, axis=0):
        if not transforms or not isinstance(transforms, typing.Sequence):
            raise TypeError(
                f"Expected 'transforms' is Sequence[Transform], but got {type(transforms)}."
            )
        if not all(isinstance(t, Transform) for t in transforms):
            raise TypeError(
                'Expected all element in transforms is Transform Type.')
        if not isinstance(axis, int):
            raise TypeError(f"Expected 'axis' is int, but got{type(axis)}.")

        self._transforms = transforms
        self._axis = axis

    def _is_injective(self):
        return all(t._is_injective() for t in self._transforms)

    @property
    def transforms(self):
        return self._transforms

    @property
    def axis(self):
        return self._axis

    def _forward(self, x):
        self._check_size(x)
        return paddle.stack([
            t.forward(v)
            for v, t in zip(paddle.unstack(x, self._axis), self._transforms)
        ], self._axis)

    def _inverse(self, y):
        self._check_size(y)
        return paddle.stack([
            t.inverse(v)
            for v, t in zip(paddle.unstack(y, self._axis), self._transforms)
        ], self._axis)

    def _forward_log_det_jacobian(self, x):
        self._check_size(x)
        return paddle.stack([
            t.forward_log_det_jacobian(v)
            for v, t in zip(paddle.unstack(x, self._axis), self._transforms)
        ], self._axis)

    def _check_size(self, v):
        if not (-v.dim() <= self._axis < v.dim()):
            raise ValueError(
                f'Input dimensions {v.dim()} should be grater than stack '
                f'transform axis {self._axis}.')
        if v.shape[self._axis] != len(self._transforms):
            raise ValueError(
                f'Input size along {self._axis} should be equal to the '
                f'length of transforms.')

    @property
    def _domain(self):
        return variable.Stack([t._domain for t in self._transforms], self._axis)

    @property
    def _codomain(self):
        return variable.Stack([t._codomain for t in self._transforms],
                              self._axis)


class StickBreakingTransform(Transform):
    r"""Convert an unconstrained vector to the simplex with one additional 
    dimension by the stick-breaking construction.

    Examples:

        .. code-block:: python

            import paddle


            x = paddle.to_tensor([1.,2.,3.])
            t = paddle.distribution.StickBreakingTransform()
            print(t.forward(x))
            # Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.47536686, 0.41287899, 0.10645414, 0.00530004])
            print(t.inverse(t.forward(x)))
            # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [0.99999988, 2.        , 2.99999881])
            print(t.forward_log_det_jacobian(x))
            # Tensor(shape=[1], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [-9.10835075])
    """

    _type = Type.BIJECTION

    def _forward(self, x):
        offset = x.shape[-1] + 1 - paddle.ones([x.shape[-1]]).cumsum(-1)
        z = F.sigmoid(x - offset.log())
        z_cumprod = (1 - z).cumprod(-1)
        return F.pad(z, [0, 1], value=1) * F.pad(z_cumprod, [1, 0], value=1)

    def _inverse(self, y):
        y_crop = y[..., :-1]
        offset = y.shape[-1] - paddle.ones([y_crop.shape[-1]]).cumsum(-1)
        sf = 1 - y_crop.cumsum(-1)
        x = y_crop.log() - sf.log() + offset.log()
        return x

    def _forward_log_det_jacobian(self, x):
        y = self.forward(x)
        offset = x.shape[-1] + 1 - paddle.ones([x.shape[-1]]).cumsum(-1)
        x = x - offset.log()
        return (-x + F.log_sigmoid(x) + y[..., :-1].log()).sum(-1)

    def _forward_shape(self, shape):
        if not shape:
            raise ValueError(f"Expected 'shape' is not empty, but got {shape}")
        return shape[:-1] + (shape[-1] + 1, )

    def _inverse_shape(self, shape):
        if not shape:
            raise ValueError(f"Expected 'shape' is not empty, but got {shape}")
        return shape[:-1] + (shape[-1] - 1, )

    @property
    def _domain(self):
        return variable.Independent(variable.real, 1)

    @property
    def _codomain(self):
        return variable.Variable(False, 1, constraint.simplex)


class TanhTransform(Transform):
    r"""Tanh transformation with mapping :math:`y = \tanh(x)`.

    Examples

        .. code-block:: python

            import paddle

            tanh = paddle.distribution.TanhTransform()

            x = paddle.to_tensor([[1., 2., 3.], [4., 5., 6.]])

            print(tanh.forward(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.76159418, 0.96402758, 0.99505478],
            #         [0.99932933, 0.99990922, 0.99998772]])
            print(tanh.inverse(tanh.forward(x)))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1.00000012, 2.        , 3.00000286],
            #         [4.00002146, 5.00009823, 6.00039864]])
            print(tanh.forward_log_det_jacobian(x))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[-0.86756170 , -2.65000558 , -4.61865711 ],
            #         [-6.61437654 , -8.61379623 , -10.61371803]])
            print(tanh.inverse_log_det_jacobian(tanh.forward(x)))
            # Tensor(shape=[2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.86756176 , 2.65000558 , 4.61866283 ],
            #         [6.61441946 , 8.61399269 , 10.61451530]])
    """
    _type = Type.BIJECTION

    @property
    def _domain(self):
        return variable.real

    @property
    def _codomain(self):
        return variable.Variable(False, 0, constraint.Range(-1.0, 1.0))

    def _forward(self, x):
        return x.tanh()

    def _inverse(self, y):
        return y.atanh()

    def _forward_log_det_jacobian(self, x):
        """We implicitly rely on _forward_log_det_jacobian rather than 
        explicitly implement ``_inverse_log_det_jacobian`` since directly using 
        ``-tf.math.log1p(-tf.square(y))`` has lower numerical precision.

        See details: https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py#L69-L80
        """
        return 2. * (math.log(2.) - x - F.softplus(-2. * x))