im2sequence_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/im2sequence_op.h"
16
#include <string>
17
#include <vector>
G
gongweibao 已提交
18 19 20 21

namespace paddle {
namespace operators {

22
class Im2SequenceOp : public framework::OperatorWithKernel {
G
gongweibao 已提交
23 24 25 26 27
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
G
gongweibao 已提交
28
    PADDLE_ENFORCE(ctx->HasInput("X"),
29
                   "Input(X) of Im2SequenceOp should not be null.");
G
gongweibao 已提交
30
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
31
                   "Output(Out) of Im2SequenceOp op should not be null.");
G
gongweibao 已提交
32
    auto in_dim = ctx->GetInputDim("X");
33

G
gongweibao 已提交
34
    PADDLE_ENFORCE_EQ(in_dim.size(), 4,
W
wanghaoshuang 已提交
35
                      "Input(X) format must be 4D tensor, eg., NCHW.");
W
wanghaoshuang 已提交
36 37
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
gongweibao 已提交
38 39
    int img_height = in_dim[2];
    int img_width = in_dim[3];
G
gongweibao 已提交
40

41 42 43 44
    auto kernels = ctx->Attrs().Get<std::vector<int>>("kernels");
    auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
    auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

Y
Yang Yang 已提交
45 46 47 48
    int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
                                         paddings[2], strides[0]);
    int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
                                        paddings[3], strides[1]);
G
gongweibao 已提交
49

W
wanghaoshuang 已提交
50
    ctx->SetOutputDim("Out", {batch_size * output_height * output_width,
W
wanghaoshuang 已提交
51
                              img_channels * kernels[0] * kernels[1]});
G
gongweibao 已提交
52 53 54
  }
};

55
class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
G
gongweibao 已提交
56
 public:
Y
Yu Yang 已提交
57
  void Make() override {
W
wanghaoshuang 已提交
58
    AddInput("X",
W
wanghaoshuang 已提交
59
             "(Tensor) The input tensor has NCHW format."
W
wanghaoshuang 已提交
60 61 62 63
             "N: batch size"
             "C: channels"
             "H: height"
             "W: width");
64 65 66 67
    AddInput("Y",
             "(Tensor) The input tensor of image real size(H, W)."
             "2-D with shape [batchsize, 2]")
        .AsDispensable();
W
wanghaoshuang 已提交
68
    AddOutput("Out", "(LodTensor) The output data of im2sequence op,");
W
wanghaoshuang 已提交
69 70
    AddAttr<std::vector<int>>("kernels",
                              "(vector<int>), the "
W
wanghaoshuang 已提交
71 72 73 74 75
                              "kernels(kernel_height, kernel_width)");
    AddAttr<std::vector<int>>("strides",
                              "(vector<int> default:{1, 1}), the "
                              "strides(h_stride, w_stride)")
        .SetDefault({1, 1});
W
wanghaoshuang 已提交
76 77 78 79
    AddAttr<std::vector<int>>("paddings",
                              "(vector<int> default:{0, 0, 0, 0}), the "
                              "paddings(up_pad, left_pad, down_pad, right_pad)")
        .SetDefault({0, 0, 0, 0});
80 81 82 83 84 85 86
    AddAttr<std::vector<int>>("out_stride",
                              "the attribute is valid only when input(Y)"
                              "is not NULL.this attribute represents the"
                              "scaling of the pic through the CNN"
                              "(vector<int> dedault:{1,1}),the out_stride"
                              " (out_stride_height, out_stride_width)")
        .SetDefault({1, 1});
G
gongweibao 已提交
87
    AddComment(R"DOC(
W
wanghaoshuang 已提交
88 89 90 91
This op uses kernels to scan images and converts these images to sequences.
After expanding, The number of time steps are output_height * output_width
and the dimension of each time step is kernel_height * kernel_width * channels,
in which:
W
wanghaoshuang 已提交
92 93

output_height =
W
wanghaoshuang 已提交
94
    1 + (padding_height + padding_down + img_height - kernel_height + stride_height - 1) /
W
wanghaoshuang 已提交
95 96
            stride_height;
output_width =
W
wanghaoshuang 已提交
97
    1 + (padding_left + padding+right + img_width - kernel_width + stride_width - 1) /
W
wanghaoshuang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            stride_width;

This op can be used after convolution neural network, and before recurrent neural network.

Given:

x = [[[[ 6.  2.  1.]
       [ 8.  3.  5.]
       [ 0.  2.  6.]]

      [[ 2.  4.  4.]
       [ 6.  3.  0.]
       [ 6.  4.  7.]]]

     [[[ 6.  7.  1.]
       [ 5.  7.  9.]
       [ 2.  4.  8.]]

      [[ 1.  2.  1.]
       [ 1.  3.  5.]
       [ 9.  0.  8.]]]]
x.dims = {2, 2, 3, 3}

And:

W
wanghaoshuang 已提交
123 124 125
kernels = [2, 2]
strides = [1, 1]
paddings = [0, 0, 0, 0]
W
wanghaoshuang 已提交
126 127 128 129 130 131 132 133 134 135 136

Then:

output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
               [ 2.  1.  3.  5.  4.  4.  3.  0.]
               [ 8.  3.  0.  2.  6.  3.  6.  4.]
               [ 3.  5.  2.  6.  3.  0.  4.  7.]
               [ 6.  7.  5.  7.  1.  2.  1.  3.]
               [ 7.  1.  7.  9.  2.  1.  3.  5.]
               [ 5.  7.  2.  4.  1.  3.  9.  0.]
               [ 7.  9.  4.  8.  3.  5.  0.  8.]]
137
output.dims = {8, 8}
W
wanghaoshuang 已提交
138 139
output.lod = [[0, 4, 8]]

G
gongweibao 已提交
140 141 142 143
)DOC");
  }
};

144
class Im2SequenceGradOp : public framework::OperatorWithKernel {
G
gongweibao 已提交
145 146 147 148
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
G
add gpu  
gongweibao 已提交
149 150 151
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
G
gongweibao 已提交
152 153
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
G
add gpu  
gongweibao 已提交
154
  }
G
gongweibao 已提交
155 156 157 158 159 160
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
161
REGISTER_OPERATOR(im2sequence, ops::Im2SequenceOp, ops::Im2SequenceOpMaker,
162 163
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(im2sequence_grad, ops::Im2SequenceGradOp);
G
gongweibao 已提交
164
REGISTER_OP_CPU_KERNEL(
165 166
    im2sequence,
    ops::Im2SequenceKernel<paddle::platform::CPUDeviceContext, float>);
G
gongweibao 已提交
167
REGISTER_OP_CPU_KERNEL(
168 169
    im2sequence_grad,
    ops::Im2SequenceGradKernel<paddle::platform::CPUDeviceContext, float>);