im2sequence_op.cc 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/im2sequence_op.h"
G
gongweibao 已提交
16 17 18 19

namespace paddle {
namespace operators {

20
class Im2SequenceOp : public framework::OperatorWithKernel {
G
gongweibao 已提交
21 22 23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
G
gongweibao 已提交
26
    PADDLE_ENFORCE(ctx->HasInput("X"),
27
                   "Input(X) of Im2SequenceOp should not be null.");
G
gongweibao 已提交
28
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
29
                   "Output(Out) of Im2SequenceOp op should not be null.");
G
gongweibao 已提交
30

G
gongweibao 已提交
31
    auto in_dim = ctx->GetInputDim("X");
G
gongweibao 已提交
32
    PADDLE_ENFORCE_EQ(in_dim.size(), 4,
W
wanghaoshuang 已提交
33
                      "Input(X) format must be 4D tensor, eg., NCHW.");
G
gongweibao 已提交
34

W
wanghaoshuang 已提交
35 36 37
    auto kernels = ctx->Attrs().Get<std::vector<int>>("kernels");
    auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
    auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
G
gongweibao 已提交
38

W
wanghaoshuang 已提交
39 40
    int batch_size = in_dim[0];
    int img_channels = in_dim[1];
G
gongweibao 已提交
41 42
    int img_height = in_dim[2];
    int img_width = in_dim[3];
G
gongweibao 已提交
43

W
wanghaoshuang 已提交
44 45
    int output_height = OutputSize(img_height, kernels[0], paddings[0],
                                   paddings[2], strides[0]);
W
wanghaoshuang 已提交
46
    int output_width =
W
wanghaoshuang 已提交
47
        OutputSize(img_width, kernels[1], paddings[1], paddings[3], strides[1]);
G
gongweibao 已提交
48

W
wanghaoshuang 已提交
49
    ctx->SetOutputDim("Out", {batch_size * output_height * output_width,
W
wanghaoshuang 已提交
50
                              img_channels * kernels[0] * kernels[1]});
G
gongweibao 已提交
51 52 53
  }
};

54
class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
G
gongweibao 已提交
55
 public:
56
  Im2SequenceOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
gongweibao 已提交
57
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
58
    AddInput("X",
W
wanghaoshuang 已提交
59
             "(Tensor) The input tensor has NCHW format."
W
wanghaoshuang 已提交
60 61 62 63
             "N: batch size"
             "C: channels"
             "H: height"
             "W: width");
W
wanghaoshuang 已提交
64
    AddOutput("Out", "(LodTensor) The output data of im2sequence op,");
W
wanghaoshuang 已提交
65 66
    AddAttr<std::vector<int>>("kernels",
                              "(vector<int>), the "
W
wanghaoshuang 已提交
67 68 69 70 71
                              "kernels(kernel_height, kernel_width)");
    AddAttr<std::vector<int>>("strides",
                              "(vector<int> default:{1, 1}), the "
                              "strides(h_stride, w_stride)")
        .SetDefault({1, 1});
W
wanghaoshuang 已提交
72 73 74 75
    AddAttr<std::vector<int>>("paddings",
                              "(vector<int> default:{0, 0, 0, 0}), the "
                              "paddings(up_pad, left_pad, down_pad, right_pad)")
        .SetDefault({0, 0, 0, 0});
G
gongweibao 已提交
76
    AddComment(R"DOC(
W
wanghaoshuang 已提交
77 78 79 80
This op uses kernels to scan images and converts these images to sequences.
After expanding, The number of time steps are output_height * output_width
and the dimension of each time step is kernel_height * kernel_width * channels,
in which:
W
wanghaoshuang 已提交
81 82

output_height =
W
wanghaoshuang 已提交
83
    1 + (padding_height + padding_down + img_height - kernel_height + stride_height - 1) /
W
wanghaoshuang 已提交
84 85
            stride_height;
output_width =
W
wanghaoshuang 已提交
86
    1 + (padding_left + padding+right + img_width - kernel_width + stride_width - 1) /
W
wanghaoshuang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            stride_width;

This op can be used after convolution neural network, and before recurrent neural network.

Given:

x = [[[[ 6.  2.  1.]
       [ 8.  3.  5.]
       [ 0.  2.  6.]]

      [[ 2.  4.  4.]
       [ 6.  3.  0.]
       [ 6.  4.  7.]]]

     [[[ 6.  7.  1.]
       [ 5.  7.  9.]
       [ 2.  4.  8.]]

      [[ 1.  2.  1.]
       [ 1.  3.  5.]
       [ 9.  0.  8.]]]]
x.dims = {2, 2, 3, 3}

And:

W
wanghaoshuang 已提交
112 113 114
kernels = [2, 2]
strides = [1, 1]
paddings = [0, 0, 0, 0]
W
wanghaoshuang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128

Then:

output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
               [ 2.  1.  3.  5.  4.  4.  3.  0.]
               [ 8.  3.  0.  2.  6.  3.  6.  4.]
               [ 3.  5.  2.  6.  3.  0.  4.  7.]
               [ 6.  7.  5.  7.  1.  2.  1.  3.]
               [ 7.  1.  7.  9.  2.  1.  3.  5.]
               [ 5.  7.  2.  4.  1.  3.  9.  0.]
               [ 7.  9.  4.  8.  3.  5.  0.  8.]]
output.dims = {8, 9}
output.lod = [[0, 4, 8]]

G
gongweibao 已提交
129 130 131 132
)DOC");
  }
};

133
class Im2SequenceGradOp : public framework::OperatorWithKernel {
G
gongweibao 已提交
134 135 136 137
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
G
add gpu  
gongweibao 已提交
138 139 140
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
G
gongweibao 已提交
141 142
                   "Input(Out@GRAD) shouldn't be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
G
add gpu  
gongweibao 已提交
143
  }
G
gongweibao 已提交
144 145 146 147 148 149
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
150 151
REGISTER_OP(im2sequence, ops::Im2SequenceOp, ops::Im2SequenceOpMaker,
            im2sequence_grad, ops::Im2SequenceGradOp);
G
gongweibao 已提交
152
REGISTER_OP_CPU_KERNEL(
153 154
    im2sequence,
    ops::Im2SequenceKernel<paddle::platform::CPUDeviceContext, float>);
G
gongweibao 已提交
155
REGISTER_OP_CPU_KERNEL(
156 157
    im2sequence_grad,
    ops::Im2SequenceGradKernel<paddle::platform::CPUDeviceContext, float>);