engine_api.py 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import time
17
import tempfile
18 19 20 21 22
import copy
import os
import numpy as np
import subprocess
import paddle
23 24
import paddle.static as static
import paddle.utils as utils
25 26 27 28 29 30 31
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
from paddle.fluid import layers
from paddle.io import Dataset, IterableDataset, DataLoader
32

33
from paddle.distributed.fleet import auto
34
from paddle.distributed.auto_parallel.interface import get_collection, CollectionNames
35 36
from paddle.optimizer.lr import CosineAnnealingDecay
from paddle.fluid.dataloader.collate import default_collate_fn
37 38

paddle.enable_static()
39

40 41 42
global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
PP_MESH_0 = auto.ProcessMesh([0])
PP_MESH_1 = auto.ProcessMesh([1])
43 44
epoch_num = 1
batch_size = 2
45 46 47 48 49 50 51 52
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10

paddle.seed(44)

53
is_fetch = True
54 55
is_feed = True
my_feed_vars = []
56

57 58

class MyDataset(Dataset):
59

60 61 62 63 64 65 66 67 68 69 70 71 72
    def __init__(self, num_samples):
        super(MyDataset, self).__init__()
        self.num_samples = num_samples

    def __getitem__(self, index):
        input = np.random.uniform(size=image_size).astype("float32")
        label = np.random.randint(0, class_num - 1, dtype="int64")
        return input, label

    def __len__(self):
        return self.num_samples


73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def get_random_inputs_and_labels(image_shape, label_shape):
    input = np.random.random(size=image_shape).astype('float32')
    label = np.random.random(size=label_shape).astype('int64')
    return input, label


def batch_generator_creator():

    def __reader__():
        for _ in range(batch_num):
            batch_input, batch_label = get_random_inputs_and_labels(
                [batch_size, image_size], [batch_size, 1])
            yield batch_input, batch_label

    return __reader__


90
class MLPLayer(nn.Layer):
91

92 93 94 95 96 97 98 99
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
100 101
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
102 103
        bias_attr = None

104 105 106 107 108 109 110 111
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
112 113 114 115 116
        self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
117
        out = auto.shard_op(self.norm, PP_MESH_0)(input)
118
        out = self.linear0(out)
119 120
        if is_feed:
            my_feed_vars.append((out, out.shape))
121
        out = F.gelu(out, approximate=True)
122
        out = auto.shard_op(self.linear1, PP_MESH_1)(out)
123 124
        out = self.dropout(out)
        out = self.linear2(out)
125 126
        if is_feed:
            my_feed_vars.append((out, out.shape))
127
        if is_fetch:
128
            auto.fetch(out, "my_fetch", logging=True)
129 130 131
        return out


132
def train_high_level(fetch):
133 134
    global is_fetch
    is_fetch = fetch
135 136 137 138
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
139
    loss = paddle.nn.CrossEntropyLoss()
140
    optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
141 142 143 144
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)
145
    metric = paddle.metric.Accuracy()
146

147 148
    strategy = auto.Strategy()
    strategy.auto_mode = "semi"
149

150
    engine = auto.Engine(mlp, loss, optimizer, metric, strategy=strategy)
151

152 153
    # train
    train_dataset = MyDataset(batch_num * batch_size)
154
    eval_dataset1 = MyDataset(5 * batch_size)
155 156 157 158 159 160

    history = engine.fit(train_data=train_dataset,
                         epochs=2,
                         batch_size=batch_size,
                         valid_data=eval_dataset1,
                         log_freq=1)
161

162
    # eval
163 164
    eval_dataset2 = MyDataset(batch_size)
    engine.evaluate(eval_dataset2, batch_size=batch_size)
165

166
    # predict
167
    test_dataset = MyDataset(batch_size)
168
    outputs = engine.predict(test_dataset, batch_size=batch_size)
169 170

    # save
171
    temp_dir = tempfile.TemporaryDirectory()
172 173 174
    model_filename = os.path.join(temp_dir.name, 'mlp')
    engine.save(model_filename, training=True)
    engine.load(model_filename)
175
    temp_dir.cleanup()
176 177


178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
def train_low_level():
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
    loss = paddle.nn.CrossEntropyLoss()
    optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)
    metric = paddle.metric.Accuracy()

    strategy = auto.Strategy()
    strategy.auto_mode = "semi"

    engine = auto.Engine(mlp, loss, optimizer, metrics=None, strategy=strategy)

    feed_dict = {}
    for feed_var, shape in my_feed_vars:
        feed_dict[feed_var.name] = np.zeros(shape, dtype="float32")

    # Build normal normal dataloader
    # train
    train_dataset = MyDataset(batch_num * batch_size)
    train_dataloader = engine.dataloader(train_dataset,
                                         batch_size=batch_size,
                                         mode="train")
    engine.prepare(mode="train")
    for data in train_dataloader:
        outs = engine.run(data, feed=feed_dict, mode="train")

    # eval
    eval_dataset2 = MyDataset(batch_size)
    eval_dataloader = engine.dataloader(eval_dataset2,
                                        batch_size=batch_size,
                                        mode="eval")
    engine.prepare(mode="eval")
    for data in eval_dataloader:
        outs = engine.run(data, feed=feed_dict, mode="eval")

    # predict
    engine.to_mode("predict")
    test_dataset = MyDataset(batch_size)
    predict_dataloader = engine.dataloader(test_dataset, batch_size=batch_size)
    engine.prepare()
    for data in predict_dataloader:
        outs = engine.run(data, feed=feed_dict)

    # save
    temp_dir = tempfile.TemporaryDirectory()
    model_filename = os.path.join(temp_dir.name, 'mlp')
    engine.save(model_filename, training=True)
    engine.load(model_filename)
    temp_dir.cleanup()

    # Build dataloader from generator
    # train
    train_dataset = MyDataset(batch_num * batch_size)
    train_dataloader = engine.dataloader_from_generator(train_dataset,
                                                        batch_size=batch_size,
                                                        mode="train")
    engine.prepare(mode="train")
    for data in train_dataloader:
        outs = engine.run(data, feed=feed_dict, mode="train")

    # eval
    engine.to_mode("eval")
    eval_dataset2 = MyDataset(batch_size)
    eval_dataloader = engine.dataloader_from_generator(eval_dataset2,
                                                       batch_size=batch_size)
    engine.prepare()
    for data in eval_dataloader:
        outs = engine.run(data, feed=feed_dict)

    # predict
    test_dataset = MyDataset(batch_size)
    predict_dataloader = engine.dataloader_from_generator(test_dataset,
                                                          batch_size=batch_size,
                                                          mode="predict")
    engine.prepare(mode="predict")
    for data in predict_dataloader:
        outs = engine.run(data, feed=feed_dict, mode="predict")

    # save
    temp_dir = tempfile.TemporaryDirectory()
    model_filename = os.path.join(temp_dir.name, 'mlp')
    engine.save(model_filename, training=True)
    engine.load(model_filename)
    temp_dir.cleanup()


def train_builtin_data_vars():
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
    loss = paddle.nn.CrossEntropyLoss()
    optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)
    metric = paddle.metric.Accuracy()

    strategy = auto.Strategy()
    strategy.auto_mode = "semi"

    engine = auto.Engine(mlp, loss, optimizer, metric, strategy=strategy)

    # train
    engine.to_mode("train")

    input_spec = static.InputSpec([batch_size, image_size], 'float32', 'input')
    label_spec = static.InputSpec([batch_size, 1], 'int64', 'label')
    engine.prepare(inputs_spec=[input_spec], labels_spec=[label_spec])

    with static.program_guard(engine.main_program, engine.startup_program):
        feed_list = engine.inputs + engine.labels
        print(feed_list)
        loader = paddle.io.DataLoader.from_generator(feed_list=feed_list,
                                                     capacity=4 * batch_size,
                                                     iterable=False)

        places = static.cuda_places()
        loader.set_batch_generator(batch_generator_creator(), places=places)

    for _ in range(epoch_num):
        loader.start()  # call DataLoader.start() before each epoch starts
        try:
            while True:
                engine.run()
        except paddle.fluid.core.EOFException:
            loader.reset(
            )  # call DataLoader.reset() after catching EOFException


def train_non_builtin_data_vars():
    main_program = static.Program()
    startup_program = static.Program()
    with static.program_guard(main_program,
                              startup_program), utils.unique_name.guard():
        input = static.data(name="input",
                            shape=[batch_size, image_size],
                            dtype='float32')
        label = static.data(name="label", shape=[batch_size, 1], dtype='int64')

        loader = paddle.io.DataLoader.from_generator(feed_list=[input, label],
                                                     capacity=4 * batch_size,
                                                     iterable=False)
        places = static.cuda_places()
        loader.set_batch_generator(batch_generator_creator(), places=places)

        mlp = MLPLayer(hidden_size=hidden_size,
                       intermediate_size=4 * hidden_size,
                       dropout_ratio=0.1,
                       initializer_range=0.02)
        loss = paddle.nn.CrossEntropyLoss()
        optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
                                          beta1=0.9,
                                          beta2=0.999,
                                          epsilon=1e-08,
                                          grad_clip=None)
        metric = paddle.metric.Accuracy()
        predict = mlp(input)
        loss_var = loss(predict, label)

    strategy = auto.Strategy()
    strategy.auto_mode = "semi"

    engine = auto.Engine(loss=loss_var,
                         optimizer=optimizer,
                         metrics=metric,
                         strategy=strategy)

    # train
    engine.to_mode("train")
    engine.prepare(inputs=[input],
                   labels=[label],
                   main_program=main_program,
                   startup_program=startup_program)
    for _ in range(epoch_num):
        loader.start()  # call DataLoader.start() before each epoch starts
        try:
            while True:
                engine.run()
        except paddle.fluid.core.EOFException:
            loader.reset(
            )  # call DataLoader.reset() after catching EOFException


def get_cost():
    main_program = static.default_main_program()
    startup_program = static.default_startup_program()
    with static.program_guard(main_program,
                              startup_program), utils.unique_name.guard():
        input = static.data(name="input",
                            shape=[batch_size, image_size],
                            dtype='float32')
        label = static.data(name="label", shape=[batch_size, 1], dtype='int64')

        loader = paddle.io.DataLoader.from_generator(feed_list=[input, label],
                                                     capacity=4 * batch_size,
                                                     iterable=False)
        places = static.cuda_places()
        loader.set_batch_generator(batch_generator_creator(), places=places)

        mlp = MLPLayer(hidden_size=hidden_size,
                       intermediate_size=4 * hidden_size,
                       dropout_ratio=0.1,
                       initializer_range=0.02)
        loss = paddle.nn.CrossEntropyLoss()
        optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
                                          beta1=0.9,
                                          beta2=0.999,
                                          epsilon=1e-08,
                                          grad_clip=None)
        metric = paddle.metric.Accuracy()
        predict = mlp(input)
        loss_var = loss(predict, label)

    strategy = auto.Strategy()
    strategy.auto_mode = "semi"

    engine = auto.Engine(loss=loss_var,
                         optimizer=optimizer,
                         metrics=metric,
                         strategy=strategy)
    engine.cost()


def get_cost_by_spec():
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
    loss = paddle.nn.CrossEntropyLoss()
    optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)
    metric = paddle.metric.Accuracy()

    strategy = auto.Strategy()
    strategy.auto_mode = "semi"

    engine = auto.Engine(mlp, loss, optimizer, metric, strategy=strategy)

    input_spec = static.InputSpec([batch_size, image_size], 'float32', 'input')
    label_spec = static.InputSpec([batch_size, 1], 'int64', 'label')
    engine.cost(mode="eval", inputs_spec=[input_spec], labels_spec=[label_spec])


432
if __name__ == "__main__":
433 434 435 436 437 438 439
    train_high_level(fetch=True)
    train_high_level(fetch=False)
    train_low_level()
    train_builtin_data_vars()
    train_non_builtin_data_vars()
    get_cost()
    get_cost_by_spec()