squeeze_op.cc 14.1 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/squeeze_op.h"
L
Leo Chen 已提交
16

17
#include <memory>
18
#include <string>
19
#include <unordered_map>
20
#include <vector>
L
Leo Chen 已提交
21

Y
yuyang18 已提交
22
#include "paddle/fluid/framework/op_registry.h"
23 24 25 26

namespace paddle {
namespace operators {

L
Leo Chen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
                               const framework::DDim &in_dims,
                               bool is_runtime) {
  size_t num_squeeze_dims = squeeze_dims.size();
  std::vector<bool> should_squeeze(in_dims.size(), false);

  // Mark dimensions need to be squeezed.
  if (num_squeeze_dims == 0) {
    for (int i = 0; i < in_dims.size(); ++i) {
      if (in_dims[i] == 1) {
        should_squeeze[i] = true;
      }
    }
  } else {
    for (size_t i = 0; i < num_squeeze_dims; ++i) {
      int current = squeeze_dims[i] < 0 ? squeeze_dims[i] + in_dims.size()
                                        : squeeze_dims[i];

      PADDLE_ENFORCE_GE(
          current, 0,
          platform::errors::InvalidArgument(
              "Each axis in Attr(axes) should be in the range of [%d, %d]"
              "But current axis is:%d, input tensor's shape = [%s].",
              -in_dims.size(), in_dims.size() - 1, current, in_dims));
      PADDLE_ENFORCE_LT(
          current, in_dims.size(),
          platform::errors::InvalidArgument(
              "Each axis in Attr(axes) should be in the range of [%d, %d]"
              "But current axis is:%d, input tensor's shape = [%s].",
              -in_dims.size(), in_dims.size() - 1, current, in_dims));

      if (!should_squeeze[current]) {
        if (is_runtime) {
          // At run time, dim of 1 is allowed to squeeze
          if (in_dims[current] == 1) {
            should_squeeze[current] = true;
          }
        } else {
          // At compile time, dim of -1 or 1 is allowed to squeeze
          if (in_dims[current] == 1 || in_dims[current] == -1) {
            should_squeeze[current] = true;
          }
        }
      }
    }
  }
  // Make output dimensions
  std::vector<int64_t> output_shape;
  for (int i = 0; i < in_dims.size(); ++i) {
    if (!should_squeeze[i]) {
      output_shape.push_back(in_dims[i]);
    }
  }
  return framework::make_ddim(output_shape);
}

83
class SqueezeOp : public framework::OperatorWithKernel {
84
 public:
85 86 87
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
88 89
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Squeeze");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Squeeze");
90

Y
yuyang18 已提交
91
    const auto &x_dims = ctx->GetInputDim("X");
92
    // Check input tensor dims (<6) Eigen limit.
93
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
94 95 96 97 98
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)."
                          "But received X's dimensions = %d, X's shape=[%s].",
                          x_dims.size(), x_dims));
99

Y
yuyang18 已提交
100
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
L
Leo Chen 已提交
101
    auto out_dims = GetOutputShape(axes, x_dims, false);
102
    ctx->SetOutputDim("Out", out_dims);
103 104 105 106 107
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
108 109
  }

110 111 112
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
113 114 115
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
116
  }
117 118
};

119
class SqueezeGradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
120
 public:
121 122 123 124 125 126 127 128 129 130 131
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
132 133 134
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
Y
yuyang18 已提交
135 136 137
  }
};

138 139 140
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
141 142
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
143
    AddAttr<std::vector<int>>("axes",
144
                              "(std::vector<int>). List of integers,"
145
                              " indicating the dimensions to squeeze.")
146
        .SetDefault({});
147
    AddComment(R"DOC(
Y
yuyang18 已提交
148
        Squeeze Operator.
149 150 151 152

        Remove single-dimensional entries from the shape of a tensor.
        Takes a parameter axes with a list of axes to squeeze.
        If axes is not provided, all the single dimensions will be removed from the shape.
153
        If an axis is selected with shape entry not equal to one, an error is raised.
154

Y
yuyang18 已提交
155 156
        Examples:
        Case 1:
157
          Given
Y
yuyang18 已提交
158 159 160 161 162 163 164 165 166
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
167
          and
168
            axes = []
Y
yuyang18 已提交
169 170
          we get:
            Out.shape = (3, 5)
171 172 173 174
    )DOC");
  }
};

175
class Squeeze2Op : public framework::OperatorWithKernel {
176
 public:
177 178 179
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
180 181
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Squeeze2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Squeeze2");
182 183 184 185

    const auto &x_dims = ctx->GetInputDim("X");
    // Check input tensor dims (<6) Eigen limit.
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
186 187 188 189 190
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)."
                          "But received X's dimensions = %d, X's shape = [%s].",
                          x_dims.size(), x_dims));
191 192 193

    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");

L
Leo Chen 已提交
194
    auto out_dims = GetOutputShape(axes, x_dims, false);
195 196 197 198 199 200 201
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }

202 203
    OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Squeeze2");

204 205 206 207 208 209 210
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
211
  }
Y
yuyang18 已提交
212
};
213

214 215 216 217 218
template <typename T>
class SqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

219
  void Apply(GradOpPtr<T> grad_op) const override {
220 221 222 223 224 225 226 227
    grad_op->SetType("squeeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

228
class Squeeze2GradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
229
 public:
230 231 232
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
233 234 235 236
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "Squeeze2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Squeeze2Grad");
237 238 239 240 241 242 243 244 245
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
246 247 248
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
249 250 251
  }
};

252 253 254 255 256 257 258 259 260 261 262 263 264
template <typename T>
class SqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("squeeze");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
// the XShape is used to carry the shape and lod of X which will be used in
// squeeze_grad, in this way, the framework can reuse the memory of X
// immediately the squeeze2_op is finished.
// Considering compatibility issues, we could not fix squeeze2_op
class Squeeze2OpMaker : public SqueezeOpMaker {
 public:
  void Make() override {
    SqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in SqueezeGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
281 282
template <typename T>
class Squeeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
283
 public:
H
hong 已提交
284
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
285

286
  void Apply(GradOpPtr<T> grad_op) const override {
287
    grad_op->SetType("squeeze2_grad");
H
hong 已提交
288 289 290 291
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
292 293 294
  }
};

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
template <typename T>
class Squeeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("squeeze2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_INPLACE_OP_INFERER(SqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(SqueezeGradInplaceInferer,
311 312
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
313
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SqueezeGradNoNeedBufferVarsInferer, "X");
314 315 316 317
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
318 319 320 321
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
                  ops::SqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp,
322 323
                  ops::SqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
324
                  ops::SqueezeGradNoNeedBufferVarsInferer);
325 326

REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker,
H
hong 已提交
327 328
                  ops::Squeeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Squeeze2GradOpMaker<paddle::imperative::OpBase>,
329
                  ops::SqueezeInplaceInferer);
330
REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp,
331 332 333
                  ops::Squeeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::Squeeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
                  ops::SqueezeGradInplaceInferer);
334 335 336 337

REGISTER_OP_CPU_KERNEL(
    squeeze, ops::SqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, double>,
338
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
339 340 341 342 343 344 345
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze_grad,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
346
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
347 348 349 350 351 352
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze2, ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, double>,
353
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, bool>,
354 355 356 357 358 359 360
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze2_grad,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
361
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, bool>,
362 363 364
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);