squeeze_op.cc 13.1 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/squeeze_op.h"
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
Y
yuyang18 已提交
20
#include "paddle/fluid/framework/op_registry.h"
21 22 23 24

namespace paddle {
namespace operators {

25
class SqueezeOp : public framework::OperatorWithKernel {
26
 public:
27 28 29 30 31 32 33
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Squeeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Squeeze operator should not be null.");
34

Y
yuyang18 已提交
35
    const auto &x_dims = ctx->GetInputDim("X");
36
    // Check input tensor dims (<6) Eigen limit.
37
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
38 39 40 41
                      "ShapeError: the dimensions of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit)."
                      "But received X's dimensions = %d, X's shape=[%s].",
                      x_dims.size(), x_dims);
42

Y
yuyang18 已提交
43
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
44
    for (int a : axes) {
45 46 47 48 49 50
      PADDLE_ENFORCE_LT(
          a, x_dims.size(),
          "ShapeError: The squeeze axis should be less than input "
          "tensor's dimensions. But received axis = %d, input "
          "tensor's dimensions = %d, input tensor's shape = [%s].",
          a, x_dims.size(), x_dims);
51 52
    }

53
    auto out_dims = GetOutputShape(axes, x_dims);
54
    ctx->SetOutputDim("Out", out_dims);
55 56 57 58 59
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
60 61 62
  }

  static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
63
                                        const framework::DDim &in_dims) {
64
    size_t num_squeeze_dims = squeeze_dims.size();
65 66 67 68 69 70
    int cnt_squeezed_dims = 0;
    bool should_squeeze[9] = {false};

    // Determines number of dimensions of output tensor after squeeze.
    // Mark and count the dimensions need to be squeezed
    if (num_squeeze_dims == 0) {
71
      for (int idx = 0; idx < in_dims.size(); ++idx) {
72 73 74 75 76 77
        if (in_dims[idx] == 1) {
          should_squeeze[idx] = true;
          ++cnt_squeezed_dims;
        }
      }
    } else {
78
      for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
79 80
        int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
                                            : squeeze_dims[idx];
81
        PADDLE_ENFORCE_GE(current, 0,
82 83 84
                          "Invalid axis, the axis should >= 0."
                          "Current axis is:%d, input tensor's shape = [%s].",
                          current, in_dims);
85 86 87 88

        if (!(should_squeeze[current])) {
          ++cnt_squeezed_dims;
        }
89 90 91 92 93 94
        should_squeeze[current] = true;
      }
    }

    // Make output dimensions
    std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
95
    for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
96 97 98 99 100 101 102
      if (!should_squeeze[in_idx]) {
        output_shape[out_idx++] = in_dims[in_idx];
      }
    }

    return framework::make_ddim(output_shape);
  }
103 104 105 106

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
107 108 109
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
110
  }
111 112
};

113
class SqueezeGradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
114
 public:
115 116 117 118 119 120 121 122 123 124 125
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
126 127 128
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
Y
yuyang18 已提交
129 130 131
  }
};

132 133 134
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
135 136
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
137
    AddAttr<std::vector<int>>("axes",
138
                              "(std::vector<int>). List of integers,"
139
                              " indicating the dimensions to squeeze.")
140
        .SetDefault({});
141
    AddComment(R"DOC(
Y
yuyang18 已提交
142
        Squeeze Operator.
143 144 145 146

        Remove single-dimensional entries from the shape of a tensor.
        Takes a parameter axes with a list of axes to squeeze.
        If axes is not provided, all the single dimensions will be removed from the shape.
147
        If an axis is selected with shape entry not equal to one, an error is raised.
148

Y
yuyang18 已提交
149 150
        Examples:
        Case 1:
151
          Given
Y
yuyang18 已提交
152 153 154 155 156 157 158 159 160
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
161
          and
162
            axes = []
Y
yuyang18 已提交
163 164
          we get:
            Out.shape = (3, 5)
165 166 167 168
    )DOC");
  }
};

169
class Squeeze2Op : public framework::OperatorWithKernel {
170
 public:
171 172 173 174 175 176 177 178 179 180 181
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Squeeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Squeeze operator should not be null.");

    const auto &x_dims = ctx->GetInputDim("X");
    // Check input tensor dims (<6) Eigen limit.
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
182 183 184 185
                      "ShapeError: the dimensions of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit)."
                      "But received X's dimensions = %d, X's shape = [%s].",
                      x_dims.size(), x_dims);
186 187 188

    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    for (int a : axes) {
189 190 191 192 193 194
      PADDLE_ENFORCE_LT(
          a, x_dims.size(),
          "ShapeError: The squeeze axis should be less than input "
          "tensor's dimensions. But received axis = %d, input "
          "tensor's dimensions = %d, input tensor's shape = [%s].",
          a, x_dims.size(), x_dims);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    }

    auto out_dims = SqueezeOp::GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }

    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
                      "Output(XShape) of Squeeze operator should not be null.");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
214
  }
Y
yuyang18 已提交
215
};
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
template <typename T>
class SqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
    grad_op->SetType("squeeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
  }
};

233
class Squeeze2GradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
234
 public:
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
251 252 253
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
254 255 256
  }
};

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
// the XShape is used to carry the shape and lod of X which will be used in
// squeeze_grad, in this way, the framework can reuse the memory of X
// immediately the squeeze2_op is finished.
// Considering compatibility issues, we could not fix squeeze2_op
class Squeeze2OpMaker : public SqueezeOpMaker {
 public:
  void Make() override {
    SqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in SqueezeGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
273 274
template <typename T>
class Squeeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
275
 public:
H
hong 已提交
276
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
277

H
hong 已提交
278 279
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
280
    grad_op->SetType("squeeze2_grad");
H
hong 已提交
281 282 283 284 285
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
286 287 288
  }
};

289 290 291 292
DECLARE_INPLACE_OP_INFERER(SequeezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(SequeezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
293 294
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(SqueezeGradNoNeedBufferVarsInference,
                                      "X");
295 296 297 298
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
299 300 301 302 303
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
                  ops::SqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp,
                  ops::SqueezeGradNoNeedBufferVarsInference);
304 305

REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker,
H
hong 已提交
306 307 308
                  ops::Squeeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Squeeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::SequeezeInplaceInferer);
309
REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp,
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
                  ops::SequeezeGradInplaceInferer);

REGISTER_OP_CPU_KERNEL(
    squeeze, ops::SqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze_grad,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze2, ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze2_grad,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);