activation_op.h 35.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
11 12

#pragma once
D
dzhwinter 已提交
13 14 15
#include <glog/logging.h>
#include <string>
#include <unordered_set>
16 17
#include <utility>
#include <vector>
18

C
Clementine 已提交
19 20 21 22 23
#include <cmath>
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
27
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
28

29 30 31 32
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
33 34 35
namespace paddle {
namespace operators {

D
dzhwinter 已提交
36 37 38 39 40 41 42 43
/* Use ugly global variable, for the using in python layer side
   Please refer to the layer_helper.py and get the details.
 */
static std::unordered_set<std::string> InplaceOpSet = {
    "sigmoid", "exp",        "relu",  "tanh",      "sqrt",         "ceil",
    "floor",   "reciprocal", "relu6", "soft_relu", "hard_sigmoid",
};

C
chengduozh 已提交
44 45 46 47 48 49
/* The following operator can be used to process SelectedRows, because the
 * output of those operator for zero is zero too.
 */
static std::unordered_set<std::string> CanBeUsedBySelectedRows = {
    "abs", "abs_grad", "square", "square_grad", "sqrt", "sqrt_grad"};

D
dzhwinter 已提交
50 51
static bool IsInplace(std::string op) { return InplaceOpSet.count(op); }

Q
QI JUN 已提交
52
template <typename DeviceContext, typename Functor>
53 54
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
55
 public:
56 57
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
58
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduozh 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    auto x_var = context.InputVar("X");
    auto out_var = context.OutputVar("Out");
    PADDLE_ENFORCE(x_var != nullptr,
                   "Cannot get input Variable X, variable name = %s",
                   context.op().Input("X"));
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get output Variable Out, variable name = %s",
                   context.op().Output("Out"));

    framework::Tensor X, *Out;

    if (CanBeUsedBySelectedRows.count(context.op().Type())) {
      X = detail::Ref(
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var),
          "Cannot get input Tensor X, variable name = %s",
          context.op().Input("X"));
      Out = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          out_var);
    } else {
      X = detail::Ref(context.Input<framework::Tensor>("X"),
                      "Cannot get input Tensor X, variable name = %s",
                      context.op().Input("X"));
      Out = context.Output<framework::Tensor>("Out");
    }

    PADDLE_ENFORCE(Out != nullptr,
                   "Cannot get output tensor Out, variable name = %s",
                   context.op().Output("Out"));

    Out->mutable_data<T>(context.GetPlace());
Y
Update  
Yang Yu 已提交
89
    auto x = framework::EigenVector<T>::Flatten(X);
C
chengduozh 已提交
90
    auto out = framework::EigenVector<T>::Flatten(*Out);
Q
QI JUN 已提交
91 92
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
93
    Functor functor;
94 95 96 97 98

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
99
    functor(*place, x, out);
Q
qijun 已提交
100 101 102
  }
};

Q
QI JUN 已提交
103
template <typename DeviceContext, typename Functor>
104 105
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
106
 public:
107
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
108
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduozh 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    auto out_var = context.InputVar("Out");
    auto out_grad_var = context.InputVar(framework::GradVarName("Out"));
    auto x_grad_var = context.OutputVar(framework::GradVarName("X"));
    PADDLE_ENFORCE(out_var != nullptr,
                   "Cannot get input Variable Out, variable name = %s",
                   context.op().Input("Out"));
    PADDLE_ENFORCE(out_grad_var != nullptr,
                   "Cannot get input Variable %s, variable name = %s",
                   framework::GradVarName("Out"),
                   context.op().Input(framework::GradVarName("Out")));
    PADDLE_ENFORCE(x_grad_var != nullptr,
                   "Cannot get output Variable %s, variable name = %s",
                   framework::GradVarName("X"),
                   context.op().Output(framework::GradVarName("X")));

    framework::Tensor Out, dOut, *dX;
    if (CanBeUsedBySelectedRows.count(context.op().Type())) {
      Out = detail::Ref(
          paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*out_var),
          "Cannot get input Tensor Out, variable name = %s",
          context.op().Input("Out"));
      dOut =
          detail::Ref(paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(
                          *out_grad_var),
                      "Cannot get input Tensor %s, variable name = %s",
                      framework::GradVarName("Out"),
                      context.op().Input(framework::GradVarName("Out")));
      dX = paddle::framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(
          x_grad_var);
    } else {
      Out = detail::Ref(context.Input<framework::Tensor>("Out"),
                        "Cannot get input Tensor Out, variable name = %s",
                        context.op().Input("Out"));
      dOut = detail::Ref(
          context.Input<framework::Tensor>(framework::GradVarName("Out")),
          "Cannot get input Tensor %s, variable name = %s",
          framework::GradVarName("Out"),
          context.op().Input(framework::GradVarName("Out")));
      dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    }
    PADDLE_ENFORCE(dX != nullptr,
                   "Cannot get output tensor %s, variable name = %s",
                   framework::GradVarName("X"),
                   context.op().Output(framework::GradVarName("X")));
Q
qijun 已提交
153 154
    dX->mutable_data<T>(context.GetPlace());

C
chengduozh 已提交
155 156
    auto dout = framework::EigenVector<T>::Flatten(dOut);
    auto out = framework::EigenVector<T>::Flatten(Out);
Q
qijun 已提交
157
    auto dx = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
158 159
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
160
    Functor functor;
161 162 163 164
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
D
dzhwinter 已提交
165 166
    bool inplace = functor.Inplace();
    if (!inplace) {
C
chengduozh 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179
      auto x_var = context.InputVar("X");
      PADDLE_ENFORCE(x_var != nullptr,
                     "Cannot get input tensor X, variable name = %s",
                     context.op().Input("X"));
      framework::Tensor X;
      if (CanBeUsedBySelectedRows.count(context.op().Type())) {
        X = detail::Ref(
            paddle::framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_var));
      } else {
        X = detail::Ref(context.Input<framework::Tensor>("X"));
      }

      auto x = framework::EigenVector<T>::Flatten(X);
D
dzhwinter 已提交
180 181
      functor(*place, x, out, dout, dx);
    } else {
M
minqiyang 已提交
182
      VLOG(10) << " Inplace activation ";
D
dzhwinter 已提交
183 184 185
      auto x = framework::EigenVector<T>::Flatten(*dX);
      functor(*place, x, out, dout, dx);
    }
Q
qijun 已提交
186 187 188
  }
};

189 190 191 192 193 194 195
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
D
dzhwinter 已提交
196 197 198 199 200 201 202 203

  /* NOTE(*): Output reuse X memory if X is not dependented by its Gradient.
     For example, sigmoid op's gradient didn't involve x, so its output can
     reuse
     input memory. But abs op's gradient use x, it can not be inplaced.
     gradient did use x.
   */
  bool Inplace() const { return false; }
204 205
};

206
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
207
template <typename T>
208
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
209 210 211
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
212 213 214
  }
};

215
template <typename T>
216
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
217
  bool Inplace() const { return IsInplace("sigmoid"); }
F
fengjiayi 已提交
218 219 220 221
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
222 223 224
  }
};

225 226 227 228
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
229
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
230 231 232 233 234 235 236 237 238 239
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
240 241
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
242
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
243
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
244 245 246 247 248 249 250 251
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
252 253 254
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
255 256
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
257
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
258 259 260
  }
};

Q
qijun 已提交
261
// exp(x) = e^x
262 263
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
264 265 266
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
267 268 269
  }
};

270 271
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
272
  bool Inplace() const { return IsInplace("exp"); }
F
fengjiayi 已提交
273 274 275 276
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
277 278 279
  }
};

Q
qijun 已提交
280
// relu(x) = max(x, 0)
Q
qijun 已提交
281
template <typename T>
282
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
283 284 285
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
286 287
  }
};
Q
qijun 已提交
288

Q
qijun 已提交
289
template <typename T>
290
struct ReluGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
291
  bool Inplace() const { return IsInplace("relu"); }
F
fengjiayi 已提交
292 293 294
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
295
    dx.device(d) = dout * (out > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
296 297
  }
};
Q
qijun 已提交
298

C
Clementine 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
// gelu(x) = 0.5 * x *  (1 + erf(x / sqrt(2)))
template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    auto temp =
        ((x * static_cast<T>(M_SQRT1_2)).erf()).template cast<T>().eval();
    out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
  }
};

template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
  bool Inplace() const { return IsInplace("gelu"); }
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    auto temp = (static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
                 ((-static_cast<T>(0.5) * x.square()).exp()))
                    .template cast<T>()
                    .eval();
    dx.device(d) = dout * (out / x + temp);
  }
};

324
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
325 326
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
327 328 329
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
330 331 332 333
  }
};

template <typename T>
334
struct TanhGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
335
  bool Inplace() const { return IsInplace("tanh"); }
F
fengjiayi 已提交
336 337 338 339
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
340 341 342
  }
};

K
Kavya Srinet 已提交
343 344 345 346
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
347 348 349
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
350 351 352 353 354
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
355 356 357 358
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
359 360 361
  }
};

362 363 364 365 366 367 368 369 370
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
371 372
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
373 374
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
375
    out.device(d) = x * (temp1 + temp2);
376 377 378 379 380 381 382 383 384 385 386
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
387 388 389
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
390 391
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
392
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
393 394 395
  }
};

K
Kexin Zhao 已提交
396
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
397 398 399 400 401 402 403 404
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
405 406
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
407 408 409
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
410
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
411 412 413 414 415 416 417 418 419
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
420 421 422
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
423 424 425
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
426
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
427 428 429
  }
};

Q
qijun 已提交
430
// sqrt(x) = x^(1/2)
431 432
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
433 434 435
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
436 437 438 439
  }
};

template <typename T>
440
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
441
  bool Inplace() const { return IsInplace("sqrt"); }
F
fengjiayi 已提交
442 443 444
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
C
chengduo 已提交
445
    dx.device(d) = static_cast<T>(0.5) * dout / out;
Q
qijun 已提交
446 447 448
  }
};

D
dzhwinter 已提交
449 450 451
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
452 453 454
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
455 456 457 458 459
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
460
  bool Inplace() const { return IsInplace("ceil"); }
F
fengjiayi 已提交
461 462 463
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
464
    dx.device(d) = static_cast<T>(0) / out;
D
dzhwinter 已提交
465 466 467 468 469 470
  }
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
471 472
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
473
    out.device(d) = x.floor();
D
dzhwinter 已提交
474 475 476
  }
};

C
add cos  
chengduoZH 已提交
477 478 479 480 481
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

482 483 484 485 486 487 488
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
489 490 491 492 493
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

494 495 496 497 498 499 500
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

D
dzhwinter 已提交
539 540 541
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
542 543 544
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
545 546 547
  }
};

Q
qijun 已提交
548
// abs(x) = |x|
549 550
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
551 552 553
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
554 555 556
  }
};

557 558
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
559 560 561 562
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
563 564 565
  }
};

Q
qijun 已提交
566 567
// reciprocal(x) = 1 / x
template <typename T>
568
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
569 570 571
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
572 573 574
  }
};

575
template <typename T>
576
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
D
dzhwinter 已提交
577
  bool Inplace() const { return IsInplace("reciprocal"); }
F
fengjiayi 已提交
578 579 580 581
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
582 583 584 585
  }
};

// log(x) = natural logarithm of x
586 587
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
588 589 590
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
591 592 593
  }
};

594
template <typename T>
595
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
596 597 598 599
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
600 601 602 603
  }
};

// square(x) = x^2
604 605
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
606 607 608
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
609
  }
610
};
Q
qijun 已提交
611

612
template <typename T>
613
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
614 615 616 617
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
618 619 620
  }
};

621 622 623 624 625 626 627 628 629 630
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
631

F
fengjiayi 已提交
632 633 634
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
635
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
636 637 638
  }
};

639 640 641 642 643 644 645
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
646 647 648 649
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
650 651
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
652 653 654
  }
};

655 656 657 658 659 660 661 662 663
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
664 665 666
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
667
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
668 669 670 671 672 673 674 675 676
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
D
dzhwinter 已提交
677
  bool Inplace() const { return IsInplace("relu6"); }
F
fengjiayi 已提交
678 679 680
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
681 682 683 684
    dx.device(d) =
        dout *
        ((out > static_cast<T>(0)) * (out < static_cast<T>(threshold)))
            .template cast<T>();
685 686 687
  }
};

K
kexinzhao 已提交
688 689 690 691 692 693 694
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
695 696
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
697
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
698
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
699 700 701 702 703 704 705 706 707
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
708 709 710
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
711
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
712 713
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
714 715 716
  }
};

717 718
// softsign(x) = x / (1 + |x|)
template <typename T>
719
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
720 721 722
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
723 724 725 726 727 728
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
729
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
730 731 732
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
733
    dx.device(d) =
F
fengjiayi 已提交
734
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
735 736 737
  }
};

738 739 740 741 742 743
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
744

F
fengjiayi 已提交
745 746
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
747 748
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
749
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
750 751 752
  }
};

753 754 755 756 757 758
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
D
dzhwinter 已提交
759
  bool Inplace() const { return IsInplace("soft_relu"); }
F
fengjiayi 已提交
760 761 762
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
763
    auto tmp = static_cast<T>(threshold);
D
dzhwinter 已提交
764
    auto temp = ((out > -tmp) * (out < tmp)).template cast<T>().eval();
F
fengjiayi 已提交
765
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
766 767 768
  }
};

K
Kavya Srinet 已提交
769 770 771 772 773 774
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
775

F
fengjiayi 已提交
776 777 778
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
779 780 781
  }
};

K
Kavya Srinet 已提交
782 783 784 785 786 787
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
788 789 790
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
791 792
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
793
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
F
fengjiayi 已提交
794
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
795 796 797
  }
};

798 799 800 801 802 803
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
804

F
fengjiayi 已提交
805 806 807 808 809
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
810 811 812
  }
};

813 814 815 816 817 818
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
819 820 821 822 823
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
                   dout * (out + static_cast<T>(alpha)) *
Y
Yu Yang 已提交
824
                       (x < static_cast<T>(0)).template cast<T>();
825 826 827
  }
};

Q
QI JUN 已提交
828
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
829 830 831 832 833 834
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
835 836 837
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
838 839 840
  }
};

841 842 843 844 845 846
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
847 848 849 850
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
C
chengduo 已提交
851
                   x.pow(static_cast<T>(factor) - static_cast<T>(1));
852 853 854
  }
};

855 856 857 858 859 860 861
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
862

F
fengjiayi 已提交
863 864 865
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
866
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
867 868 869
  }
};

870 871 872 873 874 875 876
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
877

F
fengjiayi 已提交
878 879 880
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
881 882 883
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
884
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
885 886 887
  }
};

888 889 890 891 892 893 894
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
895 896
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
897
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
898
    out.device(d) = (x > th).template cast<T>() * x;
899 900 901 902 903 904 905 906 907 908
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
909 910 911
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
912
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
913
    dx.device(d) = dout * (x > th).template cast<T>();
914 915 916
  }
};

917 918 919 920 921 922 923 924
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
925 926
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
927
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
928 929
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
930 931 932 933 934 935 936 937 938 939
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }
D
dzhwinter 已提交
940
  bool Inplace() { return IsInplace("hard_sigmoid"); }
F
fengjiayi 已提交
941 942 943 944 945 946 947
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
948 949 950
  }
};

A
Abhinav Arora 已提交
951 952 953 954 955 956 957
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
958 959 960
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
961 962 963 964 965 966 967 968 969 970
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
971 972 973
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
974
    auto temp1 = static_cast<T>(1) /
975
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
D
dzhwinter 已提交
976 977
    auto temp2 = temp1 * (static_cast<T>(1) - (static_cast<T>(beta) * out));
    dx.device(d) = dout * ((static_cast<T>(beta) * out) + temp2);
A
Abhinav Arora 已提交
978 979 980
  }
};

Q
qijun 已提交
981 982
}  // namespace operators
}  // namespace paddle
983

984 985 986 987
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
988
  __macro(relu, ReluFunctor, ReluGradFunctor);                       \
C
Clementine 已提交
989
  __macro(gelu, GeluFunctor, GeluGradFunctor);                       \
990 991 992 993
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
D
dzhwinter 已提交
994 995
  __macro(ceil, CeilFunctor, ZeroGradFunctor);                       \
  __macro(floor, FloorFunctor, ZeroGradFunctor);                     \
C
add cos  
chengduoZH 已提交
996
  __macro(cos, CosFunctor, CosGradFunctor);                          \
C
add sin  
chengduoZH 已提交
997
  __macro(sin, SinFunctor, SinGradFunctor);                          \
D
dzhwinter 已提交
998
  __macro(round, RoundFunctor, ZeroGradFunctor);                     \
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
A
Abhinav Arora 已提交
1014
  __macro(swish, SwishFunctor, SwishGradFunctor);                    \
1015
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);