parameter_server_optimizer.py 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle import fluid
from .meta_optimizer_base import MetaOptimizerBase
16 17 18
from paddle.fluid import core
import subprocess
import re
19
import os
20
import platform
21
from ..base.private_helper_function import wait_server_ready
22

23 24
__all__ = []

25

26
class ParameterServerOptimizer(MetaOptimizerBase):
27
    def __init__(self, optimizer):
28
        super(ParameterServerOptimizer, self).__init__(optimizer)
29 30 31 32
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []

33 34 35 36 37 38 39 40 41 42
    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(ParameterServerOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)

        #self.micro_batch_size = user_defined_strategy.pipeline_configs[
        #    'micro_batch_size']
        self.num_microbatches = user_defined_strategy.pipeline_configs[
            'accumulate_steps']

43 44 45 46 47 48
    def _is_graph_out(self):
        return False

    def _can_apply(self):
        if self.role_maker._is_collective:
            return False
49

50 51 52
        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        return True if k_steps >= 0 else False

T
Thunderbrook 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    def get_dist_env(self):
        trainer_id = int(os.getenv('PADDLE_TRAINER_ID', '0'))
        trainer_endpoints = ''
        current_endpoint = ''
        num_trainers = 0
        if os.getenv('PADDLE_TRAINER_ENDPOINTS'):
            trainer_endpoints = os.getenv('PADDLE_TRAINER_ENDPOINTS')
            current_endpoint = trainer_endpoints.split(',')[trainer_id]
            num_trainers = len(trainer_endpoints.split(','))

        return {
            'trainer_id': trainer_id,
            'num_trainers': num_trainers,
            'current_endpoint': current_endpoint,
            'trainer_endpoints': trainer_endpoints
        }

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    def _get_distributed_strategy(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        strategy = None

        if not self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if self.user_defined_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

        return strategy

    def _build_trainer_programs(self, compiled_config):
        from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker

        _main = compiled_config.origin_main_program.clone()
        _startup = compiled_config.origin_startup_program.clone()

T
Thunderbrook 已提交
96 97
        use_ps_gpu = self.user_defined_strategy.a_sync_configs["use_ps_gpu"]

98
        if not compiled_config.is_geo_mode():
99 100 101 102 103
            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _add_lr_decay_table_pass
            _add_lr_decay_table_pass(
                _main, compiled_config,
                self.user_defined_strategy.a_sync_configs["lr_decay_steps"])

104
            # for main program
T
Thunderbrook 已提交
105 106 107 108 109
            _main = worker.distributed_ops_pass(_main, compiled_config,
                                                use_ps_gpu)
            if not use_ps_gpu:
                _main = worker.delete_optimizer_pass(_main, compiled_config)
                _main = worker.append_send_ops_pass(_main, compiled_config)
110 111
                _startup = worker.delete_extra_optimizes_pass(_startup,
                                                              compiled_config)
T
Thunderbrook 已提交
112 113

                # for startup program
114
            _startup = worker.fake_init_ops_pass(_startup, compiled_config)
T
Thunderbrook 已提交
115 116 117 118 119 120 121 122 123 124 125 126
            if use_ps_gpu:
                _main = worker.ps_gpu_pass(_main)
                from paddle.fluid.transpiler.collective import SingleProcessMultiThread
                t = SingleProcessMultiThread()
                env = self.get_dist_env()
                t.transpile(
                    startup_program=_startup,
                    main_program=_main,
                    rank=env["trainer_id"],
                    endpoints=env["trainer_endpoints"],
                    current_endpoint=env['current_endpoint'],
                    wait_port=False)
127

128 129
            compiled_config.set_origin_ps_main_program(_main)
            compiled_config.set_origin_ps_startup_program(_startup)
130 131 132 133 134
            # for heter program
            if self.role_maker._is_heter_parameter_server_mode:
                from paddle.fluid.incubate.fleet.parameter_server.ir import heter_trainer_pass as heter_worker
                if self.role_maker._is_heter_worker():
                    # for heter worker
135 136
                    stage_id = self.role_maker._get_stage_id()
                    device = self.role_maker._heter_device_type().lower()
137
                    _main = heter_worker.split_heter_worker_ops_pass(
138
                        _main, compiled_config, stage_id, device)
139 140 141 142
                else:
                    # for default worker
                    _main = heter_worker.split_trainer_ops_pass(_main,
                                                                compiled_config)
143 144 145
        else:
            _main = worker.append_send_ops_pass(_main, compiled_config)
            _startup = _startup
146 147
            compiled_config.set_origin_ps_main_program(_main)
            compiled_config.set_origin_ps_startup_program(_startup)
148

149 150 151 152 153 154 155 156
        launch_barrier = self.user_defined_strategy.a_sync_configs[
            "launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())

            # for ps-heter mode, wait heter worker ready
T
tangwei12 已提交
157 158 159
            # if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker(
            # ):
            #     wait_server_ready(self.role_maker._get_heter_worker_endpoints())
160

161 162 163 164 165 166
        return _main, _startup

    def _build_pserver_programs(self, compiled_config):
        _main = fluid.Program()
        _startup = fluid.Program()

T
tangwei12 已提交
167 168
        from paddle.fluid.incubate.fleet.parameter_server.ir import pserver_pass as server

169
        if not compiled_config.is_geo_mode():
T
tangwei12 已提交
170 171 172 173 174 175 176 177 178 179

            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops
            is_sgd_adam = False

            main_program = compiled_config.get_origin_main_program()
            ops = _get_optimize_ops(main_program)

            if len(ops) == 0:
                return _main, _startup

180 181 182 183 184 185
            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _add_lr_decay_table_pass
            lr_decay_steps = self.user_defined_strategy.a_sync_configs[
                "lr_decay_steps"]
            _add_lr_decay_table_pass(main_program, compiled_config,
                                     lr_decay_steps)

T
tangwei12 已提交
186 187 188 189 190 191 192 193
            for op in ops:
                if op.type in ["sgd", "adam"]:
                    is_sgd_adam = True
                    break

            if is_sgd_adam:
                return _main, _startup

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_optimizer_pass(_main, compiled_config)
            _main = server.large_scale_sparse_pass(_main, _main,
                                                   compiled_config, False)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.large_scale_sparse_pass(_startup, _main,
                                                      compiled_config, True)

            if not compiled_config.is_sync_mode():
                _main = server.delete_unused_in_main_pass(_main,
                                                          compiled_config)

            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)
        else:
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_geo_optimizer_pass(_main, compiled_config)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)

        return _main, _startup

221
    def _can_apply_geo(self, dist_strategy, program):
222 223 224 225 226 227 228
        def get_sys_free_mem():
            plat = platform.system()
            if platform.system() == "Darwin":
                vm = subprocess.Popen(
                    ['vm_stat'], stdout=subprocess.PIPE).communicate()[0]
                # Process vm_stat
                vmLines = vm.split('\n')
229
                sep = re.compile(r':[\s]+')
230 231 232 233 234
                vmStats = {}
                for row in range(1, len(vmLines) - 2):
                    rowText = vmLines[row].strip()
                    rowElements = sep.split(rowText)
                    vmStats[(rowElements[0]
235
                             )] = int(rowElements[1].strip(r'\.')) * 4096
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
                return vmStats["Pages free"]
            elif platform.system() == "Linux":
                mems = {}
                with open('/proc/meminfo', 'rb') as f:
                    for line in f:
                        fields = line.split()
                        mems[fields[0]] = int(fields[1]) * 1024
                free = mems[b'MemFree:']
                return free
            else:
                raise ValueError(
                    "%s platform is unsupported is parameter server optimizer" %
                    (platform.system()))

        if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer):
251
            return False
252 253 254

        free = get_sys_free_mem()

255
        from paddle.fluid.incubate.fleet.parameter_server.ir import vars_metatools
256

257
        processed_var_names = set(["@EMPTY@"])
258
        param_memory_size = 0
259 260 261 262 263 264
        for varname in program.global_block().vars:
            var = program.global_block().vars[varname]
            if not var.persistable or var.desc.type(
            ) != core.VarDesc.VarType.LOD_TENSOR:
                continue
            param = vars_metatools.create_var_struct(var)
265
            param_memory_size += param.m_size
266
            processed_var_names.add(varname)
267 268 269 270

        upper_mem_use = param_memory_size * 5.0

        program_tmp_vars = dict()
271
        eval_batch_size = 1024
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
        for op in program.global_block().ops:
            for var_name in op.output_arg_names:
                if var_name in processed_var_names:
                    continue
                processed_var_names.add(var_name)
                var = program.global_block().vars[var_name]

                if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR:
                    continue

                data_count = 1
                neg_dim_count = 0
                for x in var.shape:
                    if x < 0:
                        if neg_dim_count >= 1:
                            raise ValueError(
                                "Var %s has more than one negative dim." %
                                (var_name))
                        neg_dim_count += 1
                        data_count *= (-x)
                    else:
                        data_count *= x
294 295 296
                program_tmp_vars[var_name] = (
                    data_count, neg_dim_count,
                    vars_metatools.dtype_to_size[var.dtype])
297 298 299 300

        for varname in program_tmp_vars:
            data_count, neg_dim_count, type_size = program_tmp_vars[varname]
            if neg_dim_count == 1:
301
                data_count *= eval_batch_size
302 303 304 305
            var_memory = data_count * type_size
            upper_mem_use += var_memory

        if upper_mem_use < free:
306
            return True
307
        else:
308
            return False
309

310 311 312 313 314 315 316
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.inner_opt.minimize(loss, startup_program, parameter_list,
                                no_grad_set)
317
        strategy = self._get_distributed_strategy()
318 319 320 321 322 323 324

        _origin_main_program = loss.block.program
        _origin_startup_program = startup_program
        from paddle.fluid.incubate.fleet.parameter_server.ir import public as public

        compiled_config = public.CompileTimeStrategy(_origin_main_program,
                                                     _origin_startup_program,
325
                                                     strategy, self.role_maker)
326
        compiled_config.strategy = strategy
327

328
        if self.role_maker._is_worker() or self.role_maker._is_heter_worker():
329 330
            main_program, startup_program = self._build_trainer_programs(
                compiled_config)
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
            if self.role_maker._is_heter_parameter_server_mode:
                _origin_startup_program._heter_pipeline_opt = {
                    "startup_program": startup_program,
                }

                loss.block.program._heter_pipeline_opt = {
                    "trainer": "HeterPipelineTrainer",
                    "device_worker": "HeterSection",
                    "trainers": self.role_maker._get_stage_trainers(
                    ),  ## trainer num in each stage
                    "trainer_id": int(self.role_maker._role_id()),
                    "pipeline_stage": int(self.role_maker._get_stage_id()) - 1,
                    "num_pipeline_stages":
                    int(self.role_maker._get_num_stage()),
                    "section_program": main_program,
                    "num_microbatches": self.num_microbatches,
                }
            else:
                loss.block.program = main_program
                fluid.framework.switch_startup_program(startup_program)

352
        elif self.role_maker._is_server():
353 354
            main_program, startup_program = self._build_pserver_programs(
                compiled_config)
355 356
            loss.block.program = main_program
            fluid.framework.switch_startup_program(startup_program)
357 358 359
        return None, None

    def _disable_strategy(self, dist_strategy):
360 361 362 363 364 365
        #if self.role_maker._is_heter_parameter_server_mode:
        #    dist_strategy.pipeline = False
        #    dist_strategy.pipeline_configs = {
        #        "micro_batch_size": 1,
        #        "accumulate_steps": 1,
        #    }
366 367 368 369 370 371
        dist_strategy.a_sync = False
        a_sync_configs = dist_strategy.a_sync_configs
        a_sync_configs["k_steps"] = -1
        dist_strategy.a_sync_configs = a_sync_configs

    def _enable_strategy(self, dist_strategy, context):
372 373 374 375 376 377
        #if self.role_maker._is_heter_parameter_server_mode:
        #    dist_strategy.pipeline = True
        #    dist_strategy.pipeline_configs = {
        #        "micro_batch_size": 1,
        #        "accumulate_steps": 1,
        #    }
378 379 380
        a_sync_configs = dist_strategy.a_sync_configs
        if a_sync_configs["k_steps"] >= 0:
            return
381 382

        dist_strategy.a_sync = True
383 384 385 386 387 388 389 390 391 392
        a_sync_configs = dist_strategy.a_sync_configs

        is_geo = self._can_apply_geo(dist_strategy,
                                     context["origin_main_program"])

        if is_geo:
            a_sync_configs["k_steps"] = 800
        else:
            a_sync_configs["k_steps"] = 0
        dist_strategy.a_sync_configs = a_sync_configs