parameter_server_optimizer.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

from paddle import fluid
from .meta_optimizer_base import MetaOptimizerBase
16 17 18
from paddle.fluid import core
import subprocess
import re
19
import os
20
import platform
21
from ..base.private_helper_function import wait_server_ready
22 23


24
class ParameterServerOptimizer(MetaOptimizerBase):
25
    def __init__(self, optimizer):
26
        super(ParameterServerOptimizer, self).__init__(optimizer)
27 28 29 30 31 32 33 34 35 36
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []

    def _is_graph_out(self):
        return False

    def _can_apply(self):
        if self.role_maker._is_collective:
            return False
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        return True if k_steps >= 0 else False

    def _get_distributed_strategy(self):
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

        k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
        strategy = None

        if not self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_sync_strategy()

        if self.user_defined_strategy.a_sync and k_steps == 0:
            strategy = StrategyFactory.create_async_strategy()

        if self.user_defined_strategy.a_sync and k_steps > 0:
            strategy = StrategyFactory.create_geo_strategy(k_steps)

        if not strategy:
            raise ValueError("k_steps must be invalid value, please check")

        return strategy

    def _build_trainer_programs(self, compiled_config):
        from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker

        _main = compiled_config.origin_main_program.clone()
        _startup = compiled_config.origin_startup_program.clone()

        if not compiled_config.is_geo_mode():
            # for main program
            _main = worker.delete_optimizer_pass(_main, compiled_config)
            _main = worker.distributed_ops_pass(_main, compiled_config)
            _main = worker.append_send_ops_pass(_main, compiled_config)

            # for startup program
            _startup = worker.fake_init_ops_pass(_startup, compiled_config)
            _startup = worker.delet_extra_optimizes_pass(_startup,
                                                         compiled_config)
77

78 79
            compiled_config.set_origin_ps_main_program(_main)
            compiled_config.set_origin_ps_startup_program(_startup)
80 81 82 83 84 85 86 87 88 89 90 91 92 93
            # for heter program
            if self.role_maker._is_heter_parameter_server_mode:
                from paddle.fluid.incubate.fleet.parameter_server.ir import heter_trainer_pass as heter_worker
                if self.role_maker._is_heter_worker():
                    # for heter worker
                    _main = heter_worker.split_heter_worker_ops_pass(
                        _main, compiled_config)
                else:
                    # for default worker
                    _main = heter_worker.split_trainer_ops_pass(_main,
                                                                compiled_config)
                # for startup change
                _startup = heter_worker.delete_startup_useless_ops_var_pass(
                    _startup, _main, compiled_config)
94 95 96
        else:
            _main = worker.append_send_ops_pass(_main, compiled_config)
            _startup = _startup
97 98
            compiled_config.set_origin_ps_main_program(_main)
            compiled_config.set_origin_ps_startup_program(_startup)
99

100 101 102 103 104 105 106 107
        launch_barrier = self.user_defined_strategy.a_sync_configs[
            "launch_barrier"]
        launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1"))
        if launch_barrier and launch_barrier_flag:
            # for trainer wait server ready
            wait_server_ready(self.role_maker._get_pserver_endpoints())

            # for ps-heter mode, wait heter worker ready
T
tangwei12 已提交
108 109 110
            # if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker(
            # ):
            #     wait_server_ready(self.role_maker._get_heter_worker_endpoints())
111

112 113 114 115 116 117
        return _main, _startup

    def _build_pserver_programs(self, compiled_config):
        _main = fluid.Program()
        _startup = fluid.Program()

T
tangwei12 已提交
118 119
        from paddle.fluid.incubate.fleet.parameter_server.ir import pserver_pass as server

120
        if not compiled_config.is_geo_mode():
T
tangwei12 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

            from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops
            is_sgd_adam = False

            main_program = compiled_config.get_origin_main_program()
            ops = _get_optimize_ops(main_program)

            if len(ops) == 0:
                return _main, _startup

            for op in ops:
                if op.type in ["sgd", "adam"]:
                    is_sgd_adam = True
                    break

            if is_sgd_adam:
                return _main, _startup

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_optimizer_pass(_main, compiled_config)
            _main = server.large_scale_sparse_pass(_main, _main,
                                                   compiled_config, False)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.large_scale_sparse_pass(_startup, _main,
                                                      compiled_config, True)

            if not compiled_config.is_sync_mode():
                _main = server.delete_unused_in_main_pass(_main,
                                                          compiled_config)

            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)
        else:
            _main = server.add_listen_and_serv_pass(_main, compiled_config)
            _main = server.add_rpc_global_flags_pass(_main, compiled_config)
            _main = server.add_geo_optimizer_pass(_main, compiled_config)
            _startup = server.build_pserver_startup_program_pass(
                _startup, _main, compiled_config)
            _startup = server.delete_unused_in_startup_pass(_startup, _main,
                                                            compiled_config)

        return _main, _startup

166
    def _can_apply_geo(self, dist_strategy, program):
167 168 169 170 171 172 173
        def get_sys_free_mem():
            plat = platform.system()
            if platform.system() == "Darwin":
                vm = subprocess.Popen(
                    ['vm_stat'], stdout=subprocess.PIPE).communicate()[0]
                # Process vm_stat
                vmLines = vm.split('\n')
174
                sep = re.compile(r':[\s]+')
175 176 177 178 179
                vmStats = {}
                for row in range(1, len(vmLines) - 2):
                    rowText = vmLines[row].strip()
                    rowElements = sep.split(rowText)
                    vmStats[(rowElements[0]
180
                             )] = int(rowElements[1].strip(r'\.')) * 4096
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
                return vmStats["Pages free"]
            elif platform.system() == "Linux":
                mems = {}
                with open('/proc/meminfo', 'rb') as f:
                    for line in f:
                        fields = line.split()
                        mems[fields[0]] = int(fields[1]) * 1024
                free = mems[b'MemFree:']
                return free
            else:
                raise ValueError(
                    "%s platform is unsupported is parameter server optimizer" %
                    (platform.system()))

        if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer):
196
            return False
197 198 199

        free = get_sys_free_mem()

200
        from paddle.fluid.incubate.fleet.parameter_server.ir import vars_metatools
201

202
        processed_var_names = set(["@EMPTY@"])
203
        param_memory_size = 0
204 205 206 207 208 209
        for varname in program.global_block().vars:
            var = program.global_block().vars[varname]
            if not var.persistable or var.desc.type(
            ) != core.VarDesc.VarType.LOD_TENSOR:
                continue
            param = vars_metatools.create_var_struct(var)
210
            param_memory_size += param.m_size
211
            processed_var_names.add(varname)
212 213 214 215

        upper_mem_use = param_memory_size * 5.0

        program_tmp_vars = dict()
216
        eval_batch_size = 1024
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        for op in program.global_block().ops:
            for var_name in op.output_arg_names:
                if var_name in processed_var_names:
                    continue
                processed_var_names.add(var_name)
                var = program.global_block().vars[var_name]

                if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR:
                    continue

                data_count = 1
                neg_dim_count = 0
                for x in var.shape:
                    if x < 0:
                        if neg_dim_count >= 1:
                            raise ValueError(
                                "Var %s has more than one negative dim." %
                                (var_name))
                        neg_dim_count += 1
                        data_count *= (-x)
                    else:
                        data_count *= x
239 240 241
                program_tmp_vars[var_name] = (
                    data_count, neg_dim_count,
                    vars_metatools.dtype_to_size[var.dtype])
242 243 244 245

        for varname in program_tmp_vars:
            data_count, neg_dim_count, type_size = program_tmp_vars[varname]
            if neg_dim_count == 1:
246
                data_count *= eval_batch_size
247 248 249 250
            var_memory = data_count * type_size
            upper_mem_use += var_memory

        if upper_mem_use < free:
251
            return True
252
        else:
253
            return False
254

255 256 257 258 259 260 261
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self.inner_opt.minimize(loss, startup_program, parameter_list,
                                no_grad_set)
262
        strategy = self._get_distributed_strategy()
263 264 265 266 267 268 269

        _origin_main_program = loss.block.program
        _origin_startup_program = startup_program
        from paddle.fluid.incubate.fleet.parameter_server.ir import public as public

        compiled_config = public.CompileTimeStrategy(_origin_main_program,
                                                     _origin_startup_program,
270
                                                     strategy, self.role_maker)
271
        compiled_config.strategy = strategy
272

273
        if self.role_maker._is_worker() or self.role_maker._is_heter_worker():
274 275
            main_program, startup_program = self._build_trainer_programs(
                compiled_config)
276
        elif self.role_maker._is_server():
277 278
            main_program, startup_program = self._build_pserver_programs(
                compiled_config)
279 280 281 282 283 284 285

        loss.block.program = main_program
        fluid.framework.switch_startup_program(startup_program)

        return None, None

    def _disable_strategy(self, dist_strategy):
286 287 288 289 290 291 292 293 294
        dist_strategy.a_sync = False
        a_sync_configs = dist_strategy.a_sync_configs
        a_sync_configs["k_steps"] = -1
        dist_strategy.a_sync_configs = a_sync_configs

    def _enable_strategy(self, dist_strategy, context):
        a_sync_configs = dist_strategy.a_sync_configs
        if a_sync_configs["k_steps"] >= 0:
            return
295 296

        dist_strategy.a_sync = True
297 298 299 300 301 302 303 304 305 306
        a_sync_configs = dist_strategy.a_sync_configs

        is_geo = self._can_apply_geo(dist_strategy,
                                     context["origin_main_program"])

        if is_geo:
            a_sync_configs["k_steps"] = 800
        else:
            a_sync_configs["k_steps"] = 0
        dist_strategy.a_sync_configs = a_sync_configs