adadelta_op.cc 6.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adadelta_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
C
chengduo 已提交
21

22 23 24 25
class AdadeltaOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext *ctx) const override {
J
Jiawei Wang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
    PADDLE_ENFORCE_EQ(ctx->HasInput("Param"), true,
                      platform::errors::InvalidArgument(
                          "Input(Param) of AdadeltaOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Grad"), true,
                      platform::errors::InvalidArgument(
                          "Input(Grad) of AdadeltaOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("AvgSquaredGrad"), true,
        platform::errors::InvalidArgument(
            "Input(AvgSquaredGrad) of AdadeltaOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("AvgSquaredUpdate"), true,
        platform::errors::InvalidArgument(
            "Input(AvgSquaredUpdate) of AdadeltaOp should not be null."));
    PADDLE_ENFORCE_EQ(
C
chengduo 已提交
42 43
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
J
Jiawei Wang 已提交
44 45 46 47 48 49
        true,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the received is %s",
            ctx->Inputs("Param").front(),
            ctx->GetInputsVarType("Param").front()));
    PADDLE_ENFORCE_EQ(
C
chengduo 已提交
50 51
        ctx->GetInputsVarType("Grad").front() ==
            framework::proto::VarType::LOD_TENSOR,
J
Jiawei Wang 已提交
52 53 54 55 56
        true,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the received is %s",
            ctx->Inputs("Grad").front(),
            ctx->GetInputsVarType("Grad").front()));
57

J
Jiawei Wang 已提交
58 59 60 61 62 63 64 65 66 67 68 69
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("ParamOut"), true,
        platform::errors::InvalidArgument(
            "Output(ParamOut) of AdadeltaOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("AvgSquaredGradOut"), true,
        platform::errors::InvalidArgument(
            "Output(AvgSquaredGradOut) of AdadeltaOp should not be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("AvgSquaredUpdateOut"), true,
        platform::errors::InvalidArgument(
            "Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null."));
70 71 72 73 74

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "param and grad input of AdadeltaOp should have same dimension");
J
Jiawei Wang 已提交
75 76 77 78 79 80 81
    PADDLE_ENFORCE_NE(
        framework::product(ctx->GetInputDim("AvgSquaredGrad")), 0,
        platform::errors::InvalidArgument(
            "Maybe the Input variable AvgSquaredGrad has not "
            "been initialized. You may need to confirm if you put "
            "exe.run(startup_program) after optimizer.minimize "
            "function."));
82
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"),
J
Jiawei Wang 已提交
83 84 85
                      platform::errors::InvalidArgument(
                          "Param and AvgSquaredGrad input of AdadeltaOp "
                          "should have same dimension"));
86
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"),
J
Jiawei Wang 已提交
87 88 89
                      platform::errors::InvalidArgument(
                          "Param and AvgSquaredUpdate input of AdadeltaOp "
                          "should have same dimension"));
90 91 92 93 94

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("AvgSquaredGradOut", param_dim);
    ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim);
  }
C
chengduo 已提交
95

D
dzhwinter 已提交
96 97
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
98 99
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Param"), ctx.GetPlace());
D
dzhwinter 已提交
100
  }
101 102 103 104
};

class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
105
  void Make() override {
106 107
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
108
    AddInput("AvgSquaredGrad", "(Tensor) Input average of squared gradient");
109
    AddInput("AvgSquaredUpdate",
110
             "(Tensor) Input average of squared parameter updates");
111 112 113

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("AvgSquaredGradOut",
114
              "(Tensor) Output average of squared gradient");
115
    AddOutput("AvgSquaredUpdateOut",
116
              "(Tensor) Output average of squared parameter updates");
117 118 119 120 121 122 123 124 125 126

    AddAttr<float>("rho",
                   "(float, default 0.95) Exponential decay rate "
                   "for squared gradients.")
        .SetDefault(0.95f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) Constant for "
                   "numerical stability")
        .SetDefault(1.0e-6f);
    AddComment(R"DOC(
127
Adadelta Optimizer.
128

129 130 131 132
Adadelta optimizer is implemented as explained in:
https://arxiv.org/abs/1212.5701
Adadelta is a per-dimension adaptive learning rate method used
for gradient descent.
133

134
Adadelta updates are as follows:
135

136 137 138 139 140 141
$$
avg\_squared\_grad\_out = \rho * avg\_squared\_grad + (1 - \rho) * grad * grad \\
param\_update =  - \sqrt{\frac{avg\_squared\_update + \epsilon}{avg\_squared\_grad\_out + \epsilon}} * grad \\
avg\_squared\_update\_out = \rho * avg\_squared\_update + (1 - \rho) * {param\_update}^2 \\
param\_out = param + param\_update
$$
142 143 144 145 146 147 148 149 150 151 152

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
153 154
    adadelta, ops::AdadeltaOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdadeltaOpKernel<paddle::platform::CPUDeviceContext, double>);