adadelta_op.cc 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/optimizers/adadelta_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
C
chengduo 已提交
21

22 23 24 25
class AdadeltaOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext *ctx) const override {
27 28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("AvgSquaredGrad"),
                   "Input(AvgSquaredGrad) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("AvgSquaredUpdate"),
                   "Input(AvgSquaredUpdate) of AdadeltaOp should not be null.");
C
chengduo 已提交
35 36 37 38 39 40 41 42 43 44
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Grad").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Grad").front(), ctx->GetInputsVarType("Grad").front());
45 46 47 48 49 50 51 52 53 54 55 56 57 58

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AvgSquaredGradOut"),
        "Output(AvgSquaredGradOut) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AvgSquaredUpdateOut"),
        "Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "param and grad input of AdadeltaOp should have same dimension");
59 60 61 62 63
    PADDLE_ENFORCE_NE(framework::product(ctx->GetInputDim("AvgSquaredGrad")), 0,
                      "Maybe the Input variable AvgSquaredGrad has not "
                      "been initialized. You may need to confirm if you put "
                      "exe.run(startup_program) after optimizer.minimize "
                      "function.");
64 65 66 67 68 69 70 71 72 73 74
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"),
                      "Param and AvgSquaredGrad input of AdadeltaOp "
                      "should have same dimension");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"),
                      "Param and AvgSquaredUpdate input of AdadeltaOp "
                      "should have same dimension");

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("AvgSquaredGradOut", param_dim);
    ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim);
  }
C
chengduo 已提交
75

D
dzhwinter 已提交
76 77
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
78 79
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Param"), ctx.GetPlace());
D
dzhwinter 已提交
80
  }
81 82 83 84
};

class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
85
  void Make() override {
86 87
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
88
    AddInput("AvgSquaredGrad", "(Tensor) Input average of squared gradient");
89
    AddInput("AvgSquaredUpdate",
90
             "(Tensor) Input average of squared parameter updates");
91 92 93

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("AvgSquaredGradOut",
94
              "(Tensor) Output average of squared gradient");
95
    AddOutput("AvgSquaredUpdateOut",
96
              "(Tensor) Output average of squared parameter updates");
97 98 99 100 101 102 103 104 105 106

    AddAttr<float>("rho",
                   "(float, default 0.95) Exponential decay rate "
                   "for squared gradients.")
        .SetDefault(0.95f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) Constant for "
                   "numerical stability")
        .SetDefault(1.0e-6f);
    AddComment(R"DOC(
107
Adadelta Optimizer.
108

109 110 111 112
Adadelta optimizer is implemented as explained in:
https://arxiv.org/abs/1212.5701
Adadelta is a per-dimension adaptive learning rate method used
for gradient descent.
113

114
Adadelta updates are as follows:
115

116 117 118 119 120 121
$$
avg\_squared\_grad\_out = \rho * avg\_squared\_grad + (1 - \rho) * grad * grad \\
param\_update =  - \sqrt{\frac{avg\_squared\_update + \epsilon}{avg\_squared\_grad\_out + \epsilon}} * grad \\
avg\_squared\_update\_out = \rho * avg\_squared\_update + (1 - \rho) * {param\_update}^2 \\
param\_out = param + param\_update
$$
122 123 124 125 126 127 128 129 130 131 132

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
133 134
    adadelta, ops::AdadeltaOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdadeltaOpKernel<paddle::platform::CPUDeviceContext, double>);